Present-day pattern of Cordilleran deformation
In the western United States

R. A. Bennett
J. L. Davis
Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA
B. P. Wernicke
California Institute of Technology, Pasadena, California 91125, USA

ABSTRACT

We present the first detailed geodetic image of the entire western United States south of
lat 42°N, merging both campaign and continuous Global Positioning System (GPS) and very
long baseline interferometry (VLBI) data sets in a combined solution for station velocities
having a single, uniform reference frame. The results are consistent with a number of features
previously observed through local geodetic studies and very sparse space geodetic studies,
including a dominant pattern of right-lateral shear associated with the San Andreas fault,
rates of the westernmost sites (along the California coast) of 46-48 mm/yr relative to a North
America reference frame, and some 11-13 mm/yr of deformation accommodated east of the
Sierra Nevada in the Basin and Range province north of lat 36°N. South of 36°N, the solution
also shows that the southernmost San Andreas fault system accommodates effectively all
interplate motion and that the southern Basin and Range is not deforming significantly. At lat
37°N, the eastern California shear zone appears to exhibit simple shear oriented between
~N20°W and ~N40°W relative to North America, with a fairly well defined transition zone
from localized shear to diffuse spreading in the Basin and Range. Enigmatically, this transi-
tion involves a significant component of contraction normal to the overall shear-zone trend;
sites in the Great Basin move southwestward at up to ~5 mm/yr toward sites within the east-
ern California shear zone. To the north, in contrast, there appears to be a relatively smooth
transition from east-west spreading within the eastern Great Basin to northwest-southeast
shear across the westernmost Basin and Range.

INTRODUCTION METHOD mate sets used as input depend in a complicated
Practical limitations on the scope of geodetic We used data from the GPS and very longiay on numerous factors, including the locations
networks have resulted in either densely samplézhseline interferometry (VLBI) geodetic net-of the particular stations in each set. The product
local studies, with no means to tie the detailedorks listed in Table 1. We chose to work withof this analysis was a set of velocity estimates for
observations to other densely sampled areas, these particular geodetic networks because (1) 483 globally distributed GPS and VLBI stations,
very sparse networks with just a few stations cospace geodetic networks, they provide vectancluding more than 150 stations in the western
ering very large areas. Conventional (i.e., groundneasurements with respect to an external refdgnited States with uncertainties less than or
based) networks are limited to apertures adnce frame, (2) data products necessary to esigual to ~1 mm/yr (&).
50-100 km, with no possibility to create networkmate precise velocities for these networks were We excluded from our solution all site-posi-
solutions in a common reference frame at largeeadily available, and (3) these networks providéon data whose evolution was obviously not well
scale. Even in the case of dense Global Positionifgjrly uniform coverage of the western Uniteddescribed by a constant velocity, except that we
System (GPS) sampling, it has not been feasib&tates. We did not include all of the sites from thallowed for discrete offsets due to earthquakes,
until quite recently to attempt merging disparat@articularly dense networks in southern Califorantenna changes, etc. We made no attempt to tie
data sets, collected at different times in differenia (e.g., Shen et al., 1997). the positions of collocated stations. Instead, the
areas, into a single large-scale solution. Our data analyses followed a three-step diselocity estimates of stations located within 1 km
This limitation has been a major obstacle irtributed processing procedure (e.g., Blewitt et algf one another were constrained to be equal,
understanding active tectonic processes in dif993). The first step involved reduction of theeffectively tying the velocities of GPS and VLBI
fusely deforming continental crust; such procraw GPS phase data and VLBI group delays arahtennas located at the same site. Consequently,
esses are of great scientific and societal interestas largely performed by others (Table 1). Theome velocities reflect data from more than one
For example, in the western United Statebasic products of this first step are, for each nestation, possibly from both VLBI and GPS. In
(Fig. 1), it has long been known that deformationvork, sets of one-day site-position estimatesyhat follows, we make no distinction between
of the northern Basin and Range province, dsarth orientation parameters, and error covarirelocities derived from VLBI, GPS, or combined
indicated by patterns of seismicity and Holocenance matrices. VLBI and GPS data.
faulting, amounts to ~20%—25% of the rate of In the second step, we used these parametern the third step, we rotated the velocity field
relative motion between the Pacific and Nortlestimate sets to estimate a single self-consistdriim the global geodetic reference frame used for
America plates. Thus far, however, there havset of site velocities. We used the GLOBK analythe data combination into a “North America—
been only tantalizing glimpses of the large-scalgis software (Herring, 1998) to determine thesixed” reference frame. As perfectly rigid materi-
pattern from very sparse, space-based networkslocity estimates, accounting for the fact that thals are an idealization, so too is the concept of
(e.g., Dixon et al., 1995). reference frames implicit to the parameter estiigid plates as postulated in the theory of plate tec-
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cally stable, undeforming part of North America
and the area of deformation in the western United
States, and, if so, where the boundary lies.

We realized a North America—fixed reference
frame by estimating and subtracting from the
velocity field that rigid rotation which mini-
mized the velocities of 50 sites assumed to de-
fine a stable North America interior, including
sites on the Colorado Plateau. The resulting
horizontal components of the North America—
fixed velocities for sites in the western United
States are shown in Figure 2.

The uncertainties presented in Figure 2 are
based on the least-squares propagation of scaled
observation errors and are intended to represent
the statistical uncertainty due to errors in the space
geodetic measurements. They do not reflect poten-
tial deficiencies in the constant-velocity model that
we adopted to estimate site velocities. An impor-
tant advantage of our method, as we demonstrate
below, is that the overall pattern of crustal defor-
mation is readily apparent despite the potential for
such site-dependent biases (i.e., biases that are un-

5 e > i Y i ‘ correlated between sites). Statistical analysis of the
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Figure 1. Pacific—-North America plate boundary and major tectonic features of western field is consistent with the notion of a stable North
United States. Magenta diamonds show seismicity from catalogues of California
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Ensenada (Mexico), University of Utah, and University of Nevada. ISB—Intermountain by Argus and Gordon (1996), i.e., about 2 mm/yr.
seismic belt, CNSB—central Nevada seismic belt, ECSZ—eastern California shear
zone, SBR—southern Basin and Range. Northern Basin and Range province stands RESULTS AND DISCUSSION

~1 km above sea level (dark brown) in contrast to low-lying southern Basin and Range

province (green and yellow). Our aggregate velocity solution (Fig. 2) repre-

sents the first synthesis of independent geodetic
networks throughout the entire Cordilleran defor-
tonics. Nonrigid behavior is particularly evidentcluding North America east of the Coloradamation zone in the United States south of lat 42°N
near the boundaries of continental plates, as in tRtateau, do appear stable. Of the three VLBI sited, as such, provides the most coherent image of
western United States. However, a recent study wf North America within the Colorado Plateau,ongoing crustal deformation in this region to date.
the rigid-plate hypothesis using data from théwo have marginally significant motions with re-Consequently, our velocity field bears on a large
VLBI network (Argus and Gordon, 1996), foundspect to this stable North America interior. An imnumber of tectonic problems over a variety of
that, at a limit of about 2 mm/yr (95% confi- portant question therefore remains as to whetheseaales. We concentrate on only a few of the more
dence), the interiors of at least seven plates, idistinct boundary exists between the geophysgeneral features in Figure 2. We anticipate that

TABLE 1. SPACE GEODETIC NETWORKS USED TO ESTIMATE VELOCITY FIELD

Network General location Data Time span® Analysis Sample reference
name* type! group”

BARD Northern California CGPS 1996.6-1998.3 SOPAC King et al. (1995)
CORS United States CGPS 1996.6-1998.3 SOPAC Strange (1994)

IGS Global CGPS 1996.6-1998.3 SOPAC Beutler et al. (1994)
NBAR Northern Basin & Range CGPS 1996.6—1998.3 SAO Bennett et al. (1998)
SCIGN Southern California CGPS 1996.6-1998.3 SOPAC Bock et al. (1997)
STRC* Southern California FGPS 1988.1-1997.2 MIT Bennett et al. (1996)
VLBI Global VLBI 1979.7-1998 .4 GSFC Ma and Ryan (1997)
YUCC Eastern California shear zone FGPS 1991.8-1997.9 SAQO Bennett et al. (1997)

*BARD—Bay Area Regional Deformation, CORS—NOAA’s Continuously Operating References System, IGS—
International GPS Service for Geodynamics, NBAR—Northern Basin and Range, SCIGN—Southern California
Integrated GPS Network, STRC—Salton Trough-Riverside County, YUCC—Yucca Mountain—Death Valley.

tcGPS—Continuous GPS; FGPS—field (campaign) GPS.

§0t data that were included in our solution; does not necessarily reflect the total time span of data available.

#Organization that performed the first step of the analyses (see text). SOPAC—Scripps Orbit and Permanent
Array Center, SAO—Smithsonian Astrophysical Observatory, MIT—Massachusetts institute of Technology;
GSFC—Goddard Space Flight Center. All GPS data were analyzed with GAMIT software (King and Bock, 1998).
VLB! data were analyzed with CALC/SOLVE software (Ma and Ryan, 1997).

**STRC data are also part of the SCEC data set (e.g., Shen et al., 1997).
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these velocities will be used in many, more
detailed, future studies by ourselves and other

Interpretation of geodetic velocity estimates ir
terms of geologic processes is complicated by tt
disparate time scales represented. Our GF
velocity estimates reflect the present-day patte!
of deformation. It is difficult to assess the exten
to which they represent the long-term averag
deformation. Our velocity estimates could be
biased by postseismic deformation associate
with large earthquakes, as is almost always tt
case in seismically active regions. Despite th
potential for these temporal complexities, recer
studies demonstrate a general consistency amc
the pattern of seismic strain release, the pattern
Quaternary faulting, and contemporary deforme
tions estimated from geodetic observations (e.¢
Shen-Tu et al., 1998; Ward, 1998).

From Figure 2, we see that there is little motiol
of the stations in southeastern California, Arizonz
southern Nevada, and central Utah. These east
sites typically have velocities of 1-2 mml/yr or
less, and most are not significant at the 95% co
fidence level. At the level of resolution of our date
(~2 mmlyr), therefore, this region appears to forr
part of stable North America. The largest rates re
ative to stable North America that we observe are
46-48 mmlyr, occurring, as expected, along th
California coast. The steepest gradients in tt
velocity field are associated with the San Andree
fault system, which is clearly dominated by right:
lateral shear. The orientations of most of th
velocity estimates in California are ~N40°W, ap-
proximately parallel to the plate boundary in thic
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Figure 2. Estimates of horizontal velocities relative to stable North America for sites in
western United States (arrows). Error ellipses represent 95% confidence level. Thin
black lines represent mapped Quaternary faults. Pink lines show locations of profiles
A and B in Figure 3 which are perpendicular to direction of NUVEL-1A Pacific—North
America relative plate motion. Triangles show locations of points in profiles (zero) lying
on common small circle to NUVEL-1A pole.

area. Given the uncertainties in (1) the expectétypothesis that the Intermountain seismic beind Range, consistent with the hypothesis that sig-
plate rates, based on modern geodetic studiggrks the western boundary of present-day stabidicant buoyancy forces in the northern Basin and

(Larson et al., 1997), (2) plate-tectonic constraintslorth America. Our results are consistent witiRange are largely responsible for the contrast
from the past 3 m.y. (DeMets, 1995), and (3) ththe rate estimate of Martinez et al. (1998) ofJones et al., 1996).

observed site motions, it appears that essentialby+ 1 mm/yr, east-west, across the Intermountain East of the central Nevada seismic belt, the

all of the plate-boundary deformation south of lageismic belt. We further note that the velocity fieldleformation field appears to be predominantly

36°N is accommodated within about 100-200 kracross the northern Basin and Range contragast-west extension, and west of the belt, there is

of the San Andreas fault.

sharply with what appears to be little or no defora significant component of right-lateral shear

To the north of lat 36°N, where the Inter-mation in the relatively low-lying southern Basin(Bennett et al., 1998). A similar transition in the

mountain seismic belt trends eastward and then
northward away from the San Andreas fault zo
and eastern California shear zone (Fig. 1), cc
temporary deformation extends as much

1000 km east of the San Andreas (e.g., Dix
et al., 1995; Martinez et al., 1998). Extension
strain appears to accumulate fairly evenly acrc
the northern Basin and Range province, in agre
ment with the pattern of Quaternary faulting, but
contrast to the strongly localized pattern of sei
micity (Bennett et al., 1998) (Fig. 1). The trans
tion from this extensional regime to the relativel
undeforming eastern regime is at present not w
resolved by our aggregate velocity field owing 1
uncertainties in rates in western Utah as compa
with the velocity residuals within the North Amer
ican plate. However, the first seven sites west
the Intermountain seismic belt consistently shc
westward motion either near or slightly great:
than their 95 % confidence ellipses, supporting t

NUVEL-1A Parallel(mm/yr)

NUVEL-1A Normal (mm/yr)
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Figure 3. Velocities of sites
within 200 km of profiles
shown in Figure 2 projected
onto directions parallel and

perpendicular to direction

of NUVEL-1A Pacific-North
America relative plate motion.

Blue lines show NUVEL-1A
estimates of Pacific—North
America rates. SA indicate lo-
cations of San Andreas fault
zone within each profile.
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