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4.12.1 Introduction

Continental crust, bound vertically by the surface and (tradi-

tionally) the Moho and laterally by the extent of the continen-

tal shelves, is the most prominent manifestation of silicate

differentiation of the Earth. This differentiation is imparted

by the solid–liquid segregation on a planet with sufficient

gravity. Liquids are generated by partial melting, which is

caused by decompression in the upwelling legs of solid-state

mantle convection or by volatile flux melting in subduction

zones. Owing to their low densities, liquids rise upward to

form basaltic crust, which makes up most of the seafloor on

Earth and the crusts of other rocky planets. Generating Earth’s

continental crust, on the other hand, is not so straightforward.

Because up to half of Earth’s highly incompatible trace ele-

ments are stored in the continental crust and the present

upper mantle appears to be depleted in these same elements,

it is widely thought that the continental crust originally derives

from melting of the mantle (Hofmann, 1988). However,
atise on Geochemistry 2nd Edition http://dx.doi.org/10.1016/B978-0-08-095975
compositional models all indicate that the continental crust

is too Si-rich and Mg-poor to have derived directly from melt-

ing of the ultramafic mantle, motivating the hypothesis that

formation of felsic continents requires at least one additional

stage of differentiation (Hawkesworth and Kemp, 2006;

Kelemen, 1995; Rudnick and Fountain, 1995; Taylor and

McLennan, 1985, 1995), wherein (1) primary liquids crystal-

lize and segregate mafic minerals, leaving behind a felsic resid-

ual liquid or (2) the basaltic crust is remelted to generate felsic

liquids and a residual mafic residue. These mafic cumulates or

residues, owing to their high densities, founder or subduct into

the convecting mantle, driving the remaining crust toward

Si-rich compositions (Arndt and Goldstein, 1989; DeBari and

Sleep, 1991; Herzberg et al., 1983; Kay and Kay, 1988; Lee

et al., 2007; Rudnick, 1995).

Continental crust is also distinct because it is thicker than

oceanic crust. Because of its intrinsically lower compositional

density (felsic vs. mafic) and its greater thickness, continental

crust is, regardless of its age, positively buoyant with respect to
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424 Physics and Chemistry of Deep Continental Crust Recycling
the mantle and thus more difficult to subduct than oceanic

crust. This positive buoyancy tends to isolate continental crust

from mantle convection. While oceanic crust volume is

roughly balanced by production at mantle upwellings (oceanic

spreading centers) and destruction at downwellings (subduc-

tion zones), the resistance of continents to subduction makes

them thermal insulators. Thus, the thermal history of Earth

depends on the evolution of continental crust volume through

time (Lenardic et al., 2005). The growth of continents may also

have implications for long-term sea-level fluctuations, the evo-

lution of life, and long-term climate change through influences

on Earth’s albedo (Rosing et al., 2006, 2010).

There is still no consensus on the net continental crust

growth curves. Some models suggest that the current volume

is at steady state with respect to production and destruction

and that most of the volume was formed in the Archean

(Armstrong, 1991; Bowring and Housh, 1995). In other

models, production outweighs destruction, and continents are

thought to have grown progressively, albeit episodically

(Albarède, 1998; Bennett et al., 1993; Bowring and Housh,

1995;Hawkesworth and Kemp, 2006; Jacobsen andWasserburg,

1979; Schubert and Reymer, 1985). Processes that control

the volume of continents include the formation or tectonic

accretion of juvenile crust and ‘tectonic erosion’ of the overriding

continental plate during ocean–continent subduction (Clift

et al., 2009; VonHuene and Scholl, 1991). Processes that control

thickness include magmatic inflation/underplating, advective
(a) (b)

(f)

(d) (e)

Figure 1 Cartoons of lower crustal foundering scenarios. (a) Growth of a R
(e.g., pyroxenitic) mafic lower crustal layer initiated at an intracrustal weak zo
initiated at an intracrustal weak zone. (d) Subduction-erosion of basal lithosp
pyroxenitic crust after continental lithosphere has already stabilized. (f) Activ
asthenospheric mantle flow. Vertical black arrows represent predicted region
controlled by an increase in viscosity due to temperature decrease in the ther
removal of the lower crust, andweathering (physical and chem-

ical weathering) of continental surfaces, the last process trans-

porting sediments to the ocean, after which they are either

subducted or ‘reaccreted’ onto the margins of continents in

the form of accretionary prisms (Clift et al., 2009; Plank,

2005). It is important to note that tectonic accretion and

tectonic erosion are not directly associated with chemical

differentiation because no partial melting takes place in these

processes. Removal of lower continental crust (LCC), however,

is intimately linked to chemical differentiation as the lower

crust itself may be the product of deep-level crystal accumula-

tion and liquid segregation. Weathering can also lead to

compositional differentiation of the crust via preferential

leaching of soluble elements into seawater, followed by pre-

cipitation in marine sediments or hydrothermally altered

oceanic crust (Albarède and Michard, 1986; Lee et al., 2008;

Shen et al., 2009).

Exploring all these processes simultaneously is intractable.

Here, we focus only on the convective removal of LCC and

lithospheric mantle because this is one of the most important

processes that drive the composition of the crust toward felsic

compositions. We use ‘convective removal’ as a catch-all term

to describe any sinking process driven by density instabilities

related to thermal or compositional anomalies. Delamination,

deblobbing (Peter Molnar, personal communication), detach-

ment, downwelling, dripping, etc., are all types of convective

removal (Figure 1). Much debate has occurred over which of
(c)

Peridotitic mantle
Felsic continental crust
Mafic lower crust
Oceanic crust
Accretionary prism
Base of lithosphere
Asthenospheric flow
Volcanic center

ayleigh–Taylor-type instability. (b) Peeling or delamination of densified
ne. (c) Mechanical detachment or delamination of pyroxenitic lower crust
here or lower crust. (e) Viscous drainage of a dipping layer of
e or passive extension of continental lithosphere. Red arrows represent
s of magmatism. Lithosphere is defined as a rheological boundary layer
mal boundary layer.
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these mechanisms operate. However, some aspects of the de-

bate are premature: the first-order issue of when and where

these processes operate has yet to be resolved. Furthermore,

many of these terms imply very specific mechanisms of con-

vective removal, but they are often used too casually to be

effective in communication. These terms are hence defined

below. We use the term ‘foundering’ when no specific mecha-

nism is implied.

A distinction, however, must be made between foundering

from other convective processes, such as subduction of oceanic

lithosphere. Subduction is related to plate tectonics and is a

manifestation of large-scale mantle convection, wherein the

dominant length scale of advective heat and mass transfer is

the entire mantle. Subduction involves long-lived and focused

downwellings of the cold, and hence the dense, upper thermal

boundary layer represented by the oceanic lithosphere. Lower

crustal (or deep lithospheric) recycling is a local process

associated with the growth of small-scale density instabilities

at the base of a chemical or thermal boundary layer.

In particular, the behavior of these small-scale instabilities is

independent of whole-mantle convection. Below, the basic

physics of small-scale convective removal is reviewed with

the goal of developing intuition. Case studies where founder-

ing of lithospheric mantle and lower crust has been proposed

are also discussed.

The final goal of this review is to estimate elemental mass

fluxes associated with lithospheric foundering, specifically

that of the lower crust, because crustal recycling has direct

implications for the compositional evolution of the continents

as well as the formation of fertile major-element heterogene-

ities in the mantle. From a petrogenetic and geochemical point

of view, the building blocks of continental crust are of primary

interest. We refer to these building blocks as ‘crustal material.’

Any partial melt of the mantle is considered as potential

‘crustal material’ for the simple reason that liquids segregate

from the mantle and rise toward the surface. The mantle is

implicitly taken here to represent a peridotite-dominated

system. It follows that all subsequent differentiates (residual

liquids, cumulates, and restites) of these liquids are themselves

potential crust-building material, and it is the mass exchange

of these products between the crust and the mantle that

ultimately modulates the composition and growth of the con-

tinents. The interface between the crust and mantle is tradi-

tionally taken to be the Moho, a transition from the low

seismic velocities characteristic of felsic rocks to the high ve-

locities of peridotites. However, from a petrogenetic point of

view, such a definition is too restrictive because the transfor-

mation of plagioclase-bearing rocks to garnet- and pyroxene-

bearing rocks with increasing pressure is also manifested in a

distinct velocity jump. Furthermore, early magmatic differen-

tiates are represented by mafic cumulates and restites, whose

seismic velocities are also similar to those of peridotites.

Thus, many rocks, considered here to be part of the crust,

will lie beneath the Moho (Figure 2). When it is necessary

to constrain mass fluxes, we will discard the Moho as the

conventional definition of the crust–mantle boundary. Here,

the crust–mantle boundary is defined by a compositional

transition, which may be gradational, between a largely

peridotite-dominated system (mantle) and a system dominated

by differentiates of magmas (Figure 2).
4.12.2 Physics of Lower Crustal Recycling

While geochemical mass-balance considerations strongly

suggest that lower crustal recycling occurs, finding direct evi-

dence for such a process is difficult because the hypothetical

mafic component is generally missing. It is thus important to

understand the physics of lower crustal recycling. What condi-

tions are necessary for recycling so that we can determine

when, where, and how recycling operates? What geologic

phenomena are indicative of ongoing or past lower crustal

recycling?

Deep crustal or lithospheric recycling may be relevant to a

number of geologic processes that occur far inboard of plate

margins. Examples include epirogenic uplift (e.g., the Colorado

Plateau in southwestern United States and the Hangay Dome

in Mongolia, both far from plate boundaries) as well as the

magmatism and enhanced surface heat flow often associated

with these anomalous uplifts. Bird (1979) may have been the

first to highlight that these nonplate tectonic geologic phe-

nomena may result from the growth of small-scale density

instabilities. He argued that cold and, hence, negatively buoyant

lithospheric mantle would be unstable and could potentially

founder back into the mantle, coining the term ‘delamination’

to describe the scenario in which such lithosphere detaches

along a lower crustal weak zone and peels away (Figure 1(b)).

He showed that ‘delamination’ once initiated, is faster than

thermal diffusion timescales. Consequently, the return flow of

hot, asthenospheric mantle during ‘delamination’ of the cold

lithosphere would be manifested in the form of uplift and

magmatism. The strong link between postorogenic uplift

and magmatism to ‘delamination’ was later suggested by Kay

and Kay (1988, 1993) on the basis of geological observations

in the Andes and elsewhere. There is, however, no consensus

on the exact nature of lower crustal or deep lithosphere recy-

cling. A number of other investigators have suggested that den-

sity instabilities grow by viscous downwelling (Rayleigh–Taylor

instabilities) rather than by delamination, and hybrid models

have also been proposed (Conrad and Molnar, 1997; House-

man and Molnar, 1997; Houseman et al., 1981; Jull and Kele-

men, 2001; Le Pourhiet et al., 2006; Molnar et al., 1998; Schott

and Schmeling, 1998). All these models differ from subduction

in that the characteristic length scale of the instability is defined

locally by the geometry of the density stratification rather than

by the whole mantle.

4.12.2.1 Density Anomalies and Buoyancy Driving Forces

4.12.2.1.1 Thermal buoyancy
All recycling mechanisms are ultimately driven by convection,

wherein buoyancy forces generated by density anomalies ex-

ceed viscous resisting forces. In thermal convection, advection

is driven by buoyancies associated with thermal contraction.

In particular, the upper thermal boundary layer on Earth is

cold and hence denser than the underlying mantle. The tem-

perature contrast between the boundary layer and the mantle

can be enhanced by rapid tectonic thickening, which displaces

cold geotherms into the hot mantle. The resulting density

contrast between the cold boundary layer and the hot amb-

ient mantle is given by Dr/r¼�aDT, where Dr/r is the rela-

tive density contrast, a is the thermal expansion coefficient
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Figure 2 Continental lithospheric sections (a) before removal of pyroxenitic lower crust and (b) after removal and stabilization of continental
lithosphere. Preremoval section is synthesized from tilted crustal sections or xenoliths in the Sierra Nevada, Talkeetna, and Kohistan arcs (Dhuime et al.,
2007, 2009; Ducea, 2002; Ducea and Saleeby, 1996, 1998b; Greene et al., 2006; Jagoutz, 2010; Jagoutz et al., 2009; Kelemen et al., 2003; Lee
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(�3�10�5 �C�1), and DT is the temperature contrast between

the boundary layer and the surrounding mantle. A temperature

contrast of 500 �C, which is relatively large, yields a 1.5%

density anomaly.

4.12.2.1.2 Compositional buoyancies from
garnet-pyroxenites
Compositional density anomalies are imposed by the presence

of dense mineral phases, such as pyroxene and garnet. Here, we

refer to garnet- and pyroxene-rich rocks as garnet-pyroxenites.

This term encompasses a wide range of bulk compositions and

mineral assemblages (Horodyskyj et al., 2007). These rocks are
often erroneously referred to in the literature as ‘eclogites’ but,

strictly speaking, the term ‘eclogite’ is reserved for rocks con-

taining garnet and omphacite (clinopyroxenes with >20%

jadeite component) as the dominant phases (Coleman et al.,

1965). Garnet-pyroxenites containing orthopyroxene or jadeite-

poor clinopyroxene therefore are not true eclogites. True

eclogites can be found in exhumed terranes or accretionary

prisms associated with tectonic convergence, and their proto-

liths are often related, but not restricted, to mid-ocean ridge

basalts (MORBs; see Chapter 4.13) that have undergone

hydrothermal alteration (and Na enrichment; see

Chapter 4.16). In order to avoid confusion, we use the term

Figure&nbsp;2
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‘garnet-pyroxenite’ as a general term to describe any rock in

which garnet and pyroxene are the dominant phases, including

eclogites. The term ‘eclogite’ is reserved for a specific subset of

garnet-pyroxenites.

Garnet-pyroxenites are found in the deep roots of continen-

tal and some island arcs, but unlike true eclogites, these rocks

are cumulates and restites associated with deep magmatic dif-

ferentiation (Jagoutz, 2010; Jagoutz et al., 2009; Lee et al.,

2006, 2007; Rodriguez-Vargas et al., 2005; Weber et al., 2002;

Figures 2 and 3). Garnet-pyroxenites are also found within the

continental lithospheric mantle (Barth et al., 2001, 2002; Beard

et al., 1996; Coleman et al., 1965; Esperança et al., 1997; Fung

andHaggerty, 1995; Ionov, 2002; Jacob, 2004; Jacob et al., 1994;

Kaeser et al., 2009; Liu et al., 2005; Porreca et al., 2006; Pyle and

Haggerty, 1998; Schulze, 1989; Selverstone et al., 1999; Smith

et al., 2004; Song et al., 2003; Taylor andNeal, 1989; Taylor et al.,

2003). These continental pyroxenites could represent subducted

oceanic crust, cumulates, restites, melt-rock reaction products,

or frozen magmas. The petrogenetic origin of some of these

pyroxenites are discussed later.

Pyroxenite density is controlled by the proportions of gar-

net and clinopyroxene as well as bulk Fe content (Figures 3

and 4). Garnet-rich pyroxenites can be up to 10% denser

than peridotite (Figure 4; Behn and Kelemen, 2003, 2006;

Horodyskyj et al., 2007; Lee et al., 2006). This density contrast

is far higher than that imparted by thermal contraction; thus
Low MgO (<14 wt%) High MgO (>14 wt%)

(a)

(b)

(c)

(d)

(e)

(f)

1 cm

Arc pyroxenites

Figure 3 Examples of garnet- and pyroxene-rich rocks from lower
continental crust (LCC) and lithospheric mantle. (a–c) Garnet-rich low
MgO (<14 wt% MgO) pyroxenites and (d–f) garnet-poor high-MgO
(>14 wt% MgO) pyroxenites. These examples are from xenolith
specimens in Miocene alkali basalts erupted through the Cretaceous
Sierra Nevada continental arc in California. Dull green minerals are
clinopyroxene. Pale pink minerals are garnet. Pale brown minerals in
(f) are orthopyroxene. Most of the opaque (black) regions represent
garnet breakdown products (e.g., kelyphites) due to decompression or
reaction with fluids from the host lava.
the presence of garnet-pyroxenites will strongly influence the

buoyancy of the crust or lithospheric mantle. The mode of

clinopyroxene and garnet is controlled by metamorphic

phase changes associated with increases in pressure (and, to a

lesser extent, with decreases in temperature). For example, feld-

spar is a low-density phase stable at low pressures (<1–1.5 GPa),

but when subjected to higher pressures, it reacts to form garnet

and clinopyroxene (and some quartz). The effect of pressure on

mineral modes (at constant temperature) is shown in Figure 5

using the different bulk compositions of garnet-pyroxenites

shown in Table 1 (phase equilibria were calculated by Gibbs

free energy minimization using the Theriak-Domino software;

De Capitani and Petrakakis, 2010). These bulk compositions

include average MORB (Arevalo and McDonough, 2010), aver-

age LCC (Rudnick and Fountain, 1995), and high- and low-

MgO pyroxenites from continental arcs (Lee et al., 2006, 2007).

The highest densities occur when feldspar has completely

reacted to form garnet and pyroxene (‘eclogitization’), which

occurs between �1 and 1.7 GPa (�30–50 km), depending on

bulk composition and temperature (Figures 5 and 6). In par-

ticular, complete reaction of plagioclase to garnet occurs at

�1.5–1.7 GPa (45–50 km) for MORB and LCC at reasonably
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lower crustal temperatures (�700 �C), but for arc pyroxenites
this conversion is complete at lower pressures (1 GPa,

�30 km). Because the feldspar out boundary has a positive

P–T slope (Figure 6(b)), hotter geotherms will result in a

deeper ‘eclogite’ transition. Finally, because absolute densities

are controlled by the mineral assemblage, bulk density is also

controlled by bulk composition (Figures 5 and 6). MORBs,

LCC, and high-MgO pyroxenites are quartz normative, and

therefore their high-pressuremineral assemblage is characterized

by intermediate garnet proportions (30–40%) and quartz. By

contrast, low-MgO arc pyroxenites are characterized by low bulk

SiO2, which makes these rocks Si-undersaturated and garnet

rich (>50%). These are the densest types of garnet-pyroxenites.

Although the objective here is to review lower crustal recy-

cling, it is important to keep in mind that the stability of dense

lower crust will also depend on the buoyancy of the underlying

lithospheric mantle. A thick and cold lithospheric mantle will

add to the negative buoyancy of the mafic lower crust. How-

ever, in many cases, especially in Archean cratons, the conti-

nental lithospheric mantle is composed of melt-depleted

peridotite residues (e.g., atomic Mg/(MgþFe) values up to

0.92 compared to 0.89 for that of the fertile asthenospheric

mantle; see Chapter 3.6), which are intrinsically less

dense than the fertile peridotites that make up the ambient

asthenospheric mantle. Melt-depletion effects on the density of
peridotite residues can impart 1–2% of positive buoyancy, and

are thus of the right magnitude to counteract thermal contrac-

tion, resulting in isopycnic or neutral density conditions

(Jordan, 1978; Kelly et al., 2003; Lee, 2003; Schutt and Lesher,

2006). By contrast, refertilization of the lithospheric mantle via

infiltration of basaltic melts (Griffin et al., 2003; Ionov et al.,

2005; Le Roux et al., 2007; Lee and Rudnick, 1999; Simon

et al., 2003, 2007) increases compositional density (essentially

by adding more garnet-pyroxenite component into the litho-

spheric mantle), aiding destabilization.

4.12.2.1.3 Isostasy and lateral pressure gradients
The importance of density in driving convective instabilities is

best demonstrated by considering the effect on horizontal

pressure gradients (deviatoric stresses) (Molnar and Lyon-

Caen, 1988; Molnar et al., 1993). Consider a model two-

layered continent in isostatic equilibrium with respect to the

oceanic mantle, which, for simplicity, is assumed to be homo-

geneously represented by peridotite. The top layer of the con-

tinent is made of felsic upper crust with density rc and the

bottom layer is made of mafic lower crust rx>rc. The mantle

peridotite is assumed to be denser than the felsic crust but less

dense than the mafic lower crust, that is, rc<rm<rx. Litho-
static pressure is defined by PðzÞ ¼ R z

0 rðzÞg dz, where z is zero

at the surface (Figure 7). Because of their different density
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Xincheng Zhou

Xincheng Zhou
is the ‘deeper’ means thicker eclogite layer or further eclogite process

Xincheng Zhou

Xincheng Zhou
What is hot contraction, why not thermal bouncany?

Xincheng Zhou



Table 1 Compositions of crustal end members

Primitive
mantle
(McDonough
and Sun,
1995)

MORB
(Arevalo and
McDonough,
2010)

Primitive
intra-
oceanic
arc basalt
(Kelemen
et al.,

2003)

Primitive
continental
arc basalt
(Kelemen
et al.,
2003)

Global continental crust (CC) Sierra Nevada and PRB Kohistan Talkeetna

Global

lower CC
(Rudnick
and
Fountain,
1995)

Global

upper CC
(Rudnick
and Gao,
2003)

Global

bulk CC
(Rudnick
and Gao,
2003)

High-MgO

cumulate
(Lee et al.,
2007)

Low-MgO

cumulate
(Lee et al.,
2007)

Eastern

PRB
(average)
(Lee
et al.,
2007)

High-MgO

cumulate
(Jagoutz,
2010)

Low-MgO

cumulate
(Jagoutz,
2010)

High-MgO

cumulate
(Kelemen
et al.,
2003)

Low-MgO

cumulate
(Greene
et al.,
2006)

Felsic

plutons
(average)
(Kelemen
et al.,
2003)

Mass
proportion

0.16 0.50 0.33 0.15 0.61 0.23

SiO2 (wt%) 45.06 50.64 50.46 51.33 53.4 66.6 60.6 49.2 43.8 65.6 51.6 46.0 50.0 47.1 68.5
TiO2 (wt%) 0.16 1.13 0.91 0.98 0.82 0.64 0.70 0.54 0.73 0.7 0.2 0.9 0.1 0.6 0.5
Al2O3 (wt%) 4.44 15.47 15.72 15.7 16.9 15.4 15.9 8.0 15.6 15.9 3.4 17.2 3.4 19.1 15.2

FeOT (wt%) 8.03 9.33 8.52 8.72 8.57 5.04 6.7 9.8 13.2 3.9 6.5 11.9 8.3 9.9 4.1
MnO (wt%) 0.13 0.17 0.17 0.17 0.10 0.10 0.10 0.19 0.33 0.11 0.13 0.23 0.17 0.18 0.11
MgO (wt%) 37.81 7.84 9.84 9.48 7.24 2.48 4.7 18.4 10.2 1.6 19.5 4.3 28.0 8.1 1.7
CaO (wt%) 3.54 11.52 11.44 9.93 9.59 3.59 6.4 11.5 14.3 4.3 17.8 11.2 9.9 13.2 4.7
Na2O (wt%) 0.36 2.71 2.35 2.61 2.65 3.27 3.1 0.82 0.91 3.5 0.12 2.1 0.22 1.5 4.4
K2O (wt%) 0.03 0.18 0.45 0.88 0.61 2.80 1.8 0.18 0.22 2.5 0.00 0.14 0.02 0.11 0.76

P2O5 (wt%) 0.02 0.13 0.15 0.22 0.10 0.15 0.1 0.01 0.26 0.18 0.00 0.04 0.01 0.04 0.13
Total 100 99 100 100 100 100 100 99 100 98 99 94 100 100 100
Mg# 0.89 0.60 0.67 0.66 0.60 0.47 0.56 0.77 0.58 0.42 0.84 0.39 0.86 0.59 0.42
Sc (ppm) 16 36.8 36 33 31 14 21.9 53 43 8.9 58 48 32 44 21.4
V (ppm) 82 250 254 247 196 97 138 276 332 66 261 399 106 321 94
Cr (ppm) 2625 326 576 398 215 92 135 1752 82 26 2721 109 3239 159 6.3
Co (ppm) 105 56 44 41 38 17.3 26.6 44 37

Ni (ppm) 1960 200 240 159 88 47 59 307 99 9.1 214 43 516 42 4.8
Cu (ppm) 30 70 85 92 26 28 27 71 96 15 44 156 25
Zn (ppm) 55 80 72 81 78 67 72 73 104 68 43 62 48
Ga (ppm) 4 21 13 17.5 16 10 13 4 16 15
Y (ppm) 4.3 30 19 19 16 21 19 12 21 16 3 18 3 9 31
Yb (ppm) 0.44 3 2 2 1.5 1.96 2 1.7 4.1 1.8 0.4 1.9 0.2 0.7 3.1

Mg#¼ atomic Mg/(MgþFeT), where FeT is total Fe; FeOT represents all Fe as FeO; PRB, Peninsular Ranges Batholith; mass proportions of components estimated from inversion with respect to primitive continental arc basalt; residuals represent

the difference.
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Figure 6 (a) Density versus pressure for the four different bulk compositions shown in Figure 5 under isothermal (700 �C) conditions. Peridotite
(pyrolite) composition is shown for reference. Symbols are shown in the inset. (b) P–T diagram showing the feldspar-out curves for the bulk
compositions shown in Figure 5 and (a) of this figure, which is taken to represent full ‘eclogitization.’ Thin dashed lines represent model steady-state
geotherms corresponding to surface heat fluxes of 40, 50, 60, and 80 mW m�2 using crustal and lithospheric mantle heat production values given
in Rudnick et al. (1998). All other lines are the same as in (a).
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Figure 7 Lithostatic pressures beneath an isostatically compensated continent and surrounding mantle. Density structures are shown on
far-right-hand cartoons. (a) Uniform low-density continent. (b) Layered continent with a low-density upper crust and a high-density lower crust.
The difference between lithostatic pressures at a given stratum (i.e., the area between the curves in the leftmost panels) is shown in the middle panels
(red line represents pressure beneath the continent; black line represents pressure beneath surroundings). Arrows in the rightmost cartoons show
the direction of differential horizontal pressure.
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structures, lithostatic pressures beneath the continental and

oceanic domains differ, converging only at the compensation

depth, which is the base of the continental column below

which lithostatic pressures beneath the two domains converge.

Above the compensation depth, the different lithostatic pres-

sures result in a horizontal pressure gradient between the oce-

anic and continental domains. These horizontal differences in

lithostatic pressure are small (10–100 MPa) compared to the

total lithostatic pressure (GPa), but such pressure differences

may be sufficient to drive flow. If the entire lithospheric col-

umn is positively buoyant, horizontal gradients in lithostatic

pressure cause the continent to exert an outward horizontal

pressure (Figure 7(a)). Thus, mountains and their roots will

tend to gravitationally collapse through lateral flow if the

viscous resistance of the continents can be overcome. If the

felsic crust is underlain by a dense mafic crust, the direction of

horizontal pressure gradients becomes more complicated

(Figure 7(b)). At shallow depths, the continent exerts an

outward-directed horizontal pressure as in the above example.

However, at greater depths, the surrounding mantle in the oce-

anic domain exerts a horizontal pressure into the continent.

These horizontal pressure gradients cause regions of high topog-

raphy to gravitationally collapse, but at depth, the inward-

directed pressure gradients drive downwelling of the dense

lower crust. The highest inward-directed pressures concentrate

at the felsic–mafic transition, which coincidentally may also

be the location of a rheological weak zone. In summary, the

above discussion shows that lateral pressure gradients are a con-

sequence of isostatic equilibrium. These pressure gradients can

drive convective thinning of the crust and lithosphere.
4.12.2.2 Mechanisms of Deep Crustal Recycling

4.12.2.2.1 Rayleigh–Taylor-type foundering
The rate at which negatively buoyant lower crust founders into

the mantle depends on the magnitude of viscous resisting

forces. The standard way of portraying convective removal of
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Figure 8 (a) Diagram illustrating a Rayleigh–Taylor instability with a rigid, l
The underlying mantle is assumed to be inviscid so that initially all viscous res
lower crust: �x is the viscosity of the mafic lower crust, H is the thickness of
to the lower crust–mantle interface, and dw/dt is the growth rate of this pertu
layer thickness H and contoured against the viscosity of the pyroxenitic mafi
a dense layer (for both thermal and compositional buoyancy)

is via a Rayleigh–Taylor-type instability, which describes the

behavior of a high-density fluid layer above a low-density fluid

layer (Figures 1(a) and 8). Small perturbations to the unstable

density interface result in the growth of instabilities, which

develop slowly but eventually form blobs that ultimately foun-

der into the underlying layer. There are numerous studies

that outline the physics and mathematics of the growth of

Rayleigh–Taylor instabilities, including the effects of non-

Newtonian rheology (Conrad and Molnar, 1997; Houseman

and Molnar, 1997; Houseman et al., 1981; Jull and Kelemen,

2001; Molnar et al., 1998; Whitehead, 1986; Whitehead and

Luther, 1975). The reader is referred to these papers for details.

Here, the physics of foundering is encapsulated at the most

rudimentary level in order to develop intuition (cf. Davies,

1999). These solutions are order-of-magnitude approxima-

tions and are not meant to describe reality exactly.

Assume a dense, viscous layer of thickness H (representing

pyroxenitic lower crust) sandwiched between a rigid upper

crust and an inviscid infinite half-space below, which is the

mantle (Figure 8(a)). The mafic lower crust is cooler than the

underlying mantle and, therefore, more viscous than the man-

tle because viscosity is strongly temperature dependent. For

this reason, most of the viscous resistance during initial growth

of the instability lies within the mafic lower crust and, there-

fore, for simplicity it is assumed that the underlying mantle is

of much lower viscosity (see Conrad and Molnar, 1997; Jull

and Kelemen, 2001). A force balance for a Newtonian fluid

(e.g., diffusion creep) yields the relationship:

Drxgw � �x _e � �x
1

H

dw

dt
[1]

where the � symbol implies an order-of-magnitude approxi-

mation. Because all the viscous resistance is assumed to be in

the mafic layer, we take the thickness of this layer H as the

characteristic length scale over which shear resistance operates.

The first term represents the buoyancy stress, where Drx is the
density contrast between the pyroxenitic lower crust and the
01

.1

1

0

0

00

0 10 20 30 40 50

Layer thickness H (km)

1020

1021

1022

1023

hx~1019

ow-density upper crust and a high-density viscous lower crust.
istance to negative buoyancy forces are controlled by the dense, viscous
the lower crustal layer, wo is the initial magnitude of the perturbation
rbation. (b) e-fold growth times in Ma following eqn [3] in the text versus
c lower crust �x in Pa s.

Figure&nbsp;8
Xincheng Zhou

Xincheng Zhou
Newton’s law of viscosity



432 Physics and Chemistry of Deep Continental Crust Recycling
mantle, g is gravity, and w is the thickness of an initial pertur-

bation to the denser layer. The middle term represents viscous

resistance, where �x is the viscosity of the pyroxenitic layer, and

_e is the strain rate. The latter can be expressed as the gradient

of downward perturbation velocity dw/dt over a characteristic

length scale related to the viscous resistance, which is taken to

be the thicknessH of the layer. Integrating eqn [1] results in an

exponential relationship for the growth of the perturbation

(this is valid only for small perturbations to the dense layer

where H can be considered constant):

w ¼ wo exp
gDrxgH

�x
t

� �
[2]

where g is a geometric constant. The time for foundering is

equivalent to the characteristic e-fold time of instability growth

given by

tcrit � �x
DrxgH

[3]

Equation [2] shows that, once the instability initiates, it grows

exponentially (Figure 8(b)). Equation [3] shows that founder-

ing occurs quickly if layer viscosity is low and the density

anomaly is high. In addition, the thicker the initial layer, the

earlier the instability grows. If the layer is too thin, the insta-

bility does not grow.

By far the most important parameter controlling growth

rates is viscosity because of its strong temperature dependence.

These growth rates can be placed into context by considering a

few examples. For the sake of simplicity, if the viscosity and the

temperature in the asthenospheric mantle is assumed to be

1019 Pa s and 1400 �C (1673 K), respectively, which is reason-

able for the temperature of the asthenosphere, then the viscos-

ity at temperatures in the lithosphere can be estimated using

the following relationship:

� Tð Þ
�1673K

� exp
E

R

1

T
� 1

1673K

� �� �
[4]

where E is the activation energy, which is between 300 and

500 kJ mol�1. For example, with a 300 kJ mol�1 activation

energy, viscosities are 1020, 1022, and 1024 Pa s at 1200, 1000,

and 800 �C, respectively. We can see from eqn [3] that for a

�1–5% density contrast (lower crust of 3330–3450 kg m�3

compared to peridotite of 3300 kg m�3) and an initial layer

thickness of �10 km, instability times are <10 Ma for viscosi-

ties<1022 Pa s, but for viscosities>1022 Pa s, corresponding to

temperatures <900 �C, the instability times are >100 Ma.

From the simple scalings described above, geologically rea-

sonable growth rates (<100 Ma) are possible only if the layer

viscosity is <�1021 Pa s (Figure 8(b)). This becomes particu-

larly limiting if density anomalies are solely driven by temper-

ature because, at timescales >100 Ma, thermal anomalies will

diffuse away. The limiting viscosity implies also a limiting

temperature. For an activation energy of 300 kJ mol�1, viscos-

ities are too high at temperatures<900 �C to allow a Rayleigh–

Taylor instability to develop (at 500 kJ mol�1, temperatures

must exceed �1000 �C). This implies that growth of density

instabilities via fluid-like behavior occurs most easily if the

dense layer is hot (see Jull and Kelemen, 2001). It similarly

follows that a dense pyroxenitic lower crust cannot founder
viscously if it is underlain by a cold lithospheric mantle. If, on

the other hand, the underlying mantle is hot (>1000 �C) and
of low viscosity (asthenosphere), the lower crust can be heated

to temperatures high enough to reduce viscous resistance,

allowing the layer to founder on a 10-Ma timescale. These

temperature constraints can be relaxed by allowing for compo-

sitional reduction of viscosity. For example, the addition of

water could reduce intrinsic viscosities by 10–100 times (Hirth

and Kohlstedt, 1996), in which case foundering could still

occur at 800 �C.
Non-Newtonian rheology, wherein strain rate scales with

stress following a power-law relationship, _e � sn, will result in
different types of growth rates. For example, for dislocation

creep, where n�3, a density perturbation will first grow slowly

and then superexponentially rather than exponentially as in

the case of Newtonian rheologies (n¼1). However, because of

the power-law relationship between stress and strain rate for

dislocation creep, the onset of superexponential growth varies

considerably. If background strain rates are low, such as in the

interior of a craton, delay times are long. If, however, back-

ground strain rates are high, such as in convergent or extensional

margins, the instability may initiate very rapidly, allowing

foundering to occur at lower temperatures than possible for

temperature-dependent Newtonian fluid. More detailed discus-

sions on non-Newtonian behavior are beyond the scope of this

review and the reader is urged to refer to more comprehensive

studies in the literature (Conrad and Molnar, 1997; Houseman

and Molnar, 1997; Jull and Kelemen, 2001).

4.12.2.2.2 Wholesale delamination or detachment
In the previous section, it was shown that, if the dense lower

crust is cold, viscous resisting forces internal to the layer are

high, preventing the entire layer from foundering. However,

deformation can be accommodated if there is a low-viscosity

layer just above the dense layer. Because felsic rocks are intrin-

sically weaker than mafic (and ultramafic) materials, a low-

viscosity layer should form within the felsic crust, provided the

thickness of the felsic crust is large enough to ensure that its

lower part behaves in a ductile manner (Figure 9; Kohlstedt

et al., 1995; Ranalli and Murphy, 1987; Tsenn and Carter,

1987). If sinking of the mafic lower crust can be accommo-

dated along a weak decoupling zone, such a process allows for

wholesale removal of the dense layer, unlike the growth of

Rayleigh–Taylor instabilities, which results in convective thin-

ning of the base of the dense layer. The scenarios described in

this section are referred to here as delamination or detachment

to distinguish them from Rayleigh–Taylor-type instabilities

(Figures 1(a)–1(c) and 8). Below, a simplified view of

delamination is provided. More detailed presentations can

be found elsewhere (Bird, 1979; Jull and Kelemen, 2001; Le

Pourhiet et al., 2006; Morency and Doin, 2004; Schott and

Schmeling, 1998).

The rate at which the dense pyroxenitic lower crust detaches

can again be approximated by assuming a force balance be-

tween the negative buoyancy forces acting on the high-density

lower crust and viscous resisting forces. To first order, we can

assume that all of the viscous resistance is initially controlled

by viscous dissipation within the thin low-viscosity layer

(Figure 10(a)) (after detachment, the viscous resistance of

the underlying mantle becomes more important). We assume

Wenrong Cao
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that flow in the thin gap is laminar and driven by a pressure

gradient, which itself is driven by the sinking lower crust. Thus,

the force balance at the onset of detachment is given by

Drgx � �wVL=H
2 [5]

where Dr is the density contrast between the mafic lower crust

and the peridotitic mantle, g is gravity, x is the thickness of

the pyroxenitic lower crust, �w is the viscosity within the low-

viscosity layer, H is the thickness of the low-viscosity layer, and

V is the average lateral velocity of the rheological fluid within

the low-viscosity layer. As the pyroxenitic lower crust sinks, a

low-pressure region is generated within the low-viscosity layer,

whichdrawsmore felsicmaterial into the layer. The force balance

approximation assumes that H is small so that the velocity field

of the low-viscosity material V is horizontal (i.e., a lubrication

approximation). Conservation of mass requires that

VH ¼ L
dH

dt
[6]

where L is the horizontal width of the gap and dH/dt is the rate

at which the gap thickens in the vertical direction, which is

equivalent to the sinking velocity of the mafic lower crust.

Rearranging eqn [6], substituting for V in eqn [5], and integrat-

ing with respect to H and t yield a formula describing the

delamination rate of the pyroxenitic lower crust

H tð Þ � Ho

1� DrgxH2
ot=�L

2
� �1=2 [7]

where Ho is the initial gap thickness. The time for initiation of

the instability occurs when the denominator of eqn [7] ap-

proaches zero, hence
tcrit � �

Drgx
L

Ho

� �2

[8]

Equation [8] shows that the mafic lower crust detaches early if

� is low,Ho is high, thickness of the lower crust x is high, or L is

low. Detachment times <10 Ma are again possible only for

viscosities in the low-viscosity layer <1022 Pa s (Figure 10(b)).

For a given viscosity, however, early detachment is favored

when the aspect ratio of the gap, L/Ho is small. Instability

growth times are infinite if Ho is zero, which means that in

the absence of a low-viscosity layer, wholesale detachment of

the mafic crust is impossible. The approach taken here is a

simplified and conservative version of that originally taken by

Bird (1979). In the foregoing, the mafic lower crust is rigid, but

Bird allowed the lower layer to bend elastically, which facili-

tates delamination. Readers are referred to Bird’s seminal paper

for details.
4.12.2.2.3 Critical thickness to which a dense mafic layer
can grow magmatically
An advantage of the simplified approach taken above for de-

lamination is that we can also consider the effect of a growing

mafic lower crust. This is especially important when consider-

ing formation of mafic cumulates and restites aggregating at

the base of an active magmatic arc. Because the delamination

rate depends on buoyancy forces and hence the thickness of

the mafic layer x, there is a critical x below which delamina-

tion is slower than the magmatic growth of the mafic lower

crust. Assuming a constant magmatic growth rate of mafic

lower crust dx/dt, the critical thickness above which delamina-

tion will occur is achieved when the magmatic growth time
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rates (in km Ma�1) are shown (dx/dt). Crossover between magmatic growth time and delamination time indicates critical time for delamination; when
delamination times exceed magmatic growth time, mafic lower crust continues to grow, but when delamination times are less than magmatic
growth time, delamination occurs. (d) Critical thickness of mafic layer for delamination when mafic layer is growing magmatically at a constant rate of
dx/dt. This thickness corresponds to that attained at the critical crossover time in (c) (L¼100 km, Ho¼5 km).
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tg¼x/(dx/dt) equals the delamination time tcrit (eqn [8];

Figure 10(c)). Equating these two times yields a critical

thickness xcrit of

xcrit �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

Drg
L

Ho

� �2 dx

dt

s
[9]

Thus, for a given magmatic growth rate dx/dt, delamination

occurs if x>xcrit. If x<xcrit, the mafic lower crust can grow

magmatically without delaminating (Figure 10(c) and 10(d)).

A more detailed numerical treatment of this calculation is

given in Behn et al. (2007). However, once dx/dt decreases or

approaches zero, such as during a magmatic lull, the system

will resume delaminating. For typical arc magmatic production
rates (�5 km Ma�1, Annen et al., 2006), critical thicknesses are

between 1 and 10 km for viscosities <1020 Pa s; for higher

viscosities, critical thicknesses can exceed 50 km, explaining

how thick mafic roots can develop without immediately

foundering.
4.12.2.2.4 Other mechanisms of deep crustal recycling
Other mechanisms of deep crustal recycling include ‘viscous

drainage’ andmechanical or thermal erosion of the lithosphere

(Figure 1(d)–1(f)). Mechanical erosion can occur if the sub-

ducting lithosphere impinges against the overriding plate. For

example, ‘flat’ subduction has been proposed to have removed

the lithospheric mantle beneath western North America
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(Bird, 1988). Complete removal of the lithospheric mantle

would allow lower crustal material to couple to the subducting

slab, eventually resulting in its removal. However, the extent to

which the continental lithospheric mantle can be removed by

such processes is unclear. Geochemical data on peridotite xe-

noliths and lavas in western North America indicate that at

least the shallowest parts of the original continental litho-

spheric mantle remain (Lee et al., 2001b; Livaccari and Perry,

1993; Luffi et al., 2009; Smith, 2000), implying that direct

coupling between lower crust and subducting slab may not

have occurred.

A more probable site for direct coupling between a subduct-

ing slab and continental crust is in the fore-arc and sub-arc

regions, where the asthenospheric mantle wedge is often very

thin or absent. While the fore-arc in many trench systems is a

place of sedimentary accretion, the truncation of geologic units

at the trench has long been suggested as evidence for ‘subduc-

tion erosion’ (Clift et al., 2009; Von Huene and Scholl, 1991).

However, because the materials being eroded at the leading

edge of the continental plate are likely to be of sedimentary

origin, they are not of particular interest in this review because

magmatic differentiation is not involved. A more important

environment where ‘subduction erosion’ may lead to mafic

lower crustal recycling is in the sub-arc environment

(Figure 1(d)). When a thick root of mafic cumulates develops,

such as beneath the Cretaceous Sierra Nevada Batholith in

California (Ducea and Saleeby, 1998b), the asthenospheric

mantle wedge could become pinched out, leading to coupling

between the subducting slab and the mafic root. All of the

above processes involving slab coupling may also be sites of

fluxing of slab-derived fluids (English et al., 2003), which

could result in significant weakening of the overriding plate

(Humphreys et al., 2003; Li et al., 2008; Smith et al., 2004; Xu,

2001) and thereby enhance lower crustal recycling.

In viscous drainage, dipping layers of pyroxenites within

the lithospheric mantle could be expected to ‘drain’ in a channel-

like instability (Figure 1(e)). These dipping layers could form

during the imbrication of the oceanic lithosphere (Helmstaedt

and Doig, 1975; Helmstaedt and Schulze, 1989). This mecha-

nism provides one means of removing pyroxenites through

cold lithospheric mantle without destroying the lithospheric

mantle. The rates of drainage should scale as

v � Drgh2 siny
�

[10]

where h is the channel thickness and y is the angle of dip. For a
viscosity of 1022 Pa s, a density contrast of 100 kg m�3, and a

channel thickness of 10 km, the minimum amount of time for

drainage through a 50-km lithosphere will be �500 Ma. Thus,

unless h is much larger or viscosity much lower, removing

pyroxenites within continental lithosphere is difficult. Effects

of thermal erosion are discussed below.

Removal Addition

Change in thickness (km)

Figure 11 Topographic response to removal of lower crust for different
density differences (%) between the lower crust and underlying peridotite
of pyrolite composition. Removal of dense lower crust results in an
increase in surface elevation. Note that, if the lower crust is buoyant and
could be hypothetically removed or thinned, a decrease in elevation
would follow.
4.12.3 The Aftermath of Foundering

4.12.3.1 Topographic Effects of Foundering

One immediate aftermath of foundering dense lower crust

(or lithospheric mantle) should be an increase in elevation

due to the replacement of a dense layer by asthenospheric
mantle, which is hotter and, hence, less dense than the foun-

dered layer (Bird, 1979; Houseman et al., 1981; Kay and Kay,

1993; Platt and England, 1993). This uplift is a consequence of

isostatic readjustment and is independent of any dynamic

effects, such as topography generated by plate flexure, deviato-

ric stresses in the asthenosphere, or asthenospheric mantle

with anomalously high potential temperatures (Figure 11).

The elevation h of a crustal column (the lithospheric mantle

is ignored here because its contribution is smaller than the

crustal effects) relative to its surroundings is given by

h ¼ rm � rcð Þcþ rm � rxð Þxþ rc � rmð Þd½ �
rm

[11]

where r is density (subscripts m, c, and x indicate the mantle,

normal crust, and mafic lower crust) and c, x, and d are the

thicknesses of the felsic crust, mafic lower crust, and surround-

ing crust, respectively. Differentiating the above equation

shows how h changes as the thickness of the lower crust x

changes (Figure 11), that is,

dh

dx
¼ rm � rx

rm
[12]

Thus, if (rm�rx)<0, that is, the mafic lower crust is denser

than the mantle, a decrease in the thickness of the lower crust

by foundering would result in a net rise in elevation pro-

portional to the relative density contrast between the foun-

dered material and the asthenospheric mantle (obviously, if

(rm�rx)>0, elevations would decrease in response to crustal

thinning). For a compositionally controlled density contrast

of 2–5% (similar to the density contrast between low-MgO

pyroxenite and peridotite; Figure 6), the predicted elevation

response would be 0.02–0.05 km of surface uplift for every

1km of the mafic lower crust removed. Removing 20km, for

Figure&nbsp;11
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example, would yield 0.4–1 km of surface uplift. Density

contrasts solely associated with temperature are smaller than

compositional density anomalies and will result in smaller

elevation responses.

Dynamic effects could enhance or suppress isostatic read-

justments to topography. For example, if the asthenospheric

return flow has a higher mantle potential temperature than

ambient asthenosphere, uplift would be enhanced. High verti-

cal deviatoric stresses, supported by active upwelling (such as

in a plume), could also enhance uplift. Topography can also be

affected during foundering. As the dense layer sinks, regardless

of the mechanism, the sinking body will generate dynamic

stresses at the base of the overriding lithosphere, depressing

the topography. After the dense layer sinks far enough away

from the overriding lithosphere, these viscous effects will sub-

side and the lithosphere will relax back to isostatic conditions.

It is beyond the scope of this review to discuss dynamic topog-

raphy quantitatively. However, it is important to understand

the conceptual differences between these two types of topo-

graphic responses. Fundamentally, the difference between the

two is that free-air gravity anomalies will be zero for isostati-

cally compensated topography but nonzero for dynamically

controlled topography.

Finally, it is important to note that, although uplift is pre-

dicted to immediately follow foundering, subsequent thermal

relaxation will likely cause this thinned lithosphere to re-

thicken by the growth of a rejuvenated thermal boundary

layer. The timescales to thermally relax back to the original

lithosphere thickness will scale as t�x2/k where x is the thick-

ness of material foundered and k is the thermal diffusivity

(�30 km2 Ma�1). For example, for x �50 km, the relaxation

time will be �80 Ma. Thus, topographic effects associated with

foundering are short-lived.
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4.12.3.2 Thermal Effects of Foundering and the Generation
of Magmatism

4.12.3.2.1 Foundering-induced decompression melting of
upwelling asthenosphere
Once foundering initiates, it proceeds rapidly because viscous

resistance is no longer controlled by the overriding lithosphere

but by the weak asthenosphere. Far-field sinking of foundered

material occurs on <10 Ma timescales, which, as discussed

above, is shorter than thermal diffusive timescales for the

characteristic length scales involved. Consequently, foundering

will impose a return flow of hot asthenospheric mantle to fill

the newly vacated ‘space’ (Figure 12(a)). This return flow will

be characterized by near-adiabatic upwelling. If this upwelling

mantle crosses the mantle solidus, partial melting will occur

(Figures 12(a) and 13). Impingement of hot asthenosphere

against the cold overlying lithosphere should also lead to

conductive heating of the former and cooling of the latter, in

turn leading to new lithosphere formation by ‘underplating’ of

newly formed melt residues and conductive cooling of ambi-

ent asthenospheric mantle; melting of the overlying litho-

sphere is also possible (Figure 12(a); Bird, 1979; Kay and

Kay, 1993; Platt and England, 1993).

The importance of foundering-induced magmatism is

underscored by numerous examples of postorogenic magma-

tism. Many of these magmas are unusual: they tend to be

alkalic to ultrapotassic in composition and are often highly

enriched in incompatible trace elements (Farmer et al., 2002;

Turner et al., 1996, 1999). The concept of foundering-induced

magmatism is illustrated in Figures 12(a) and 13. The compo-

sition of the magmas will be dictated by the average pressure of

melting (Pave), the average melting degree (Fave), and the man-

tle potential temperature (TP). Both Pave and Fave of the
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upwelling mantle are controlled by the thickness of the litho-

spheric lid and the initial pressure of melting (Figure 13). The

latter corresponds to the intersection of the mantle adiabat

with the solidus, and the former corresponds to the thickness

of the remaining lithosphere after foundering. Following the

approach of Langmuir et al. (1992) and accounting for the

latent heat of fusion yields the simple energy balance

Pf � Poð Þ dT

dPa
� dT

dPs

� �
¼ F

Hf

cP
þ dT

dF

� �
[13]

where Pf is the final pressure of melting (limited by the litho-

spheric cap), Po is the initial pressure of melting, dT/dPa is the

temperature gradient of the solid mantle adiabat

(�10 �C GPa�1), dT/dPs is the temperature gradient of the

mantle solidus (�120 �C GPa�1 for a dry solidus,), F is degree

of melting, Hf is the total heat of fusion (�420 J g�1), and cP is

the isobaric heat capacity (�1.3 J g�1 K�1). For simplicity, melt

productivity is assumed to be linear with temperature for a

given pressure; that is, dT/dF is assumed to be constant.

Equation [13] can be integrated to yield the degree of melting

as a function of decompression, that is,

dF

dP
¼ dT=dPa � dT=dPs

Hf=cP þ dT=dF
[14]
More sophisticated approaches, which account for variable

dT/dF and the effects of water, are given by Katz et al. (2003)

and shown in Figure 13.

The nature of foundering-induced magmas will depend

largely on the thickness of the remaining lithosphere, which

limits the extent of decompression and hence melting

(Figure 13). If the lithospheric lid is >50 km, foundering-

induced magmas will be characterized by high Pave and low F

(DePaolo and Daley, 2000; Haase, 1996; Langmuir et al.,

1992; Wang et al., 2002). High-P melting also implies high T

because of the positive slope of the mantle solidus. Primary

magmas derived from partial melting of upwelled peridotitic

mantle will therefore be characterized by low SiO2 (due to high

P) and high FeO (due to high T ) (cf. Carmichael et al., 1970;

Langmuir et al., 1992; Lee et al., 2009). These magmas will also

be incompatible-element enriched (e.g., Na, K, light rare earth

elements, Ba, Sr, Rb, and Ti) because the enrichment of such

elements in a liquid relative to its solid source scales as 1/F

(Langmuir et al., 1992). For this reason, foundering-induced

magmatism may be characterized by alkali basalts, depending

on how much of the deep lithosphere or lower crust foun-

dered. Volatile components, such as H2O and CO2, also be-

have almost perfectly incompatibly, and will therefore be

enriched in low-F melts, even if the mantle source is not

enriched in these components. Melting at higher Pave will

also favor melting of components in the mantle that have

lower melting points than dry peridotitic mantle. For example,

if the mantle contains pyroxenites, such rocks may be chemi-

cally overrepresented in the melt because they begin to melt at

greater depths than peridotite (Dasgupta et al., 2010; Ito and

Mahoney, 2005a,b; Pertermann and Hirschmann, 2003a,b).

Similarly, the incompatible element and isotopic composi-

tions of such melts would be expected to reflect small-scale

mantle heterogeneities. If, on the other hand, significant lith-

ospheric removal has occurred, leaving a <50-km-thick lid,

foundering-induced magmas will be produced by higher de-

grees of melting and should be tholeiitic basalts (higher SiO2

and lower alkalis). Such magmas would likely have more

homogeneous trace element and isotopic signatures. As the

compositions of magmas are influenced by average pressures

and temperatures of melting, basaltic magmas can be a useful

tool in mapping the spatial and temporal evolution of the

lithosphere–asthenosphere boundary (LAB) during and after

foundering. These concepts will be dealt with again later.

4.12.3.2.2 Increased surface heat flux and melting of the
overlying lithosphere
The incursion of hot asthenospheric mantle after deep litho-

spheric foundering should also lead to enhanced surface heat

flux (equal to the near-surface temperature gradient multiplied

by the thermal conductivity of rock). The increase in heat flux

(Figure 13) depends on the amount of lithosphere remaining

after foundering, that is, the thickness of the lithospheric lid,

which defines Pf (Figure 13). For example, removal of 60 km

of lower lithosphere (from an initial thickness of 100 km)

increases heat flux by 40–50 mWm�2, whereas removing

only 25 km yields no measurable rise in heat flux. Because it

takes time for the thermal anomaly at depth to propagate to the

surface, the peak in heat flow occurs several Ma after founder-

ing. For a remaining lithosphere thickness of �25 km, peak
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heat flux lags foundering by �8 Ma. Thermal equilibration of

the underplated asthenosphere will eventually cause geotherms,

surface heat flux, and topography to subside.

Increased heat flux may produce melting at the base of the

crust. This, of course, would occur only if the overriding lith-

osphere was heated by the underlying hot asthenosphere to

temperatures above its solidus. If hot asthenosphere impinges

directly onto the base of the felsic crust, such as after wholesale

delamination/detachment of lithospheric mantle or mafic

lower crust, extensive anatexis would be expected. Such melts

would likely be granitic to granodioritic in composition (Bird,

1979; Black and Liegeois, 1993; Mosher et al., 2008; Turner

et al., 1999). If only the base of the lithospheric mantle is

removed, such as during the growth of Rayleigh–Taylor-type

instabilities, melting of the crust and what remains of the

lithospheric mantle would be limited.
4.12.3.2.3 Melting of sinking garnet-pyroxenite blob
A second melting scenario is that the foundered material melts

as it sinks. Cold, dense material will heat up conductively as it

founders into hot asthenosphere. If the melting point of the

foundered material is low, such as might be the case for mafic

crust or volatile-rich (H2O and CO2) lithospheric mantle

(cf. Dasgupta and Hirschmann, 2006), melting may occur

(Elkins-Tanton, 2007). The extent of such melting will depend

on the rate of sinking because the solidus temperature in-

creases with pressure. For example, because a large blob heats

up slowly and sinks rapidly, melting will not occur except at

the extreme margins of the blob. Only if the blob is small and

sinks slowly will it be substantially heated and melted, but

because the total volume of the blob is small, the volume of

the melts generated would also be small. Thus, although sink-

ing pyroxenite blobs may partially melt, the total amount of

such melts is likely to be far less than that generated by decom-

pression melting of the asthenospheric mantle upwelling in

response to lithospheric foundering.
4.12.3.3 Similarities with Lithospheric Extension and
Thermal Erosion

Many of the geologic phenomena predicted to mark the after-

math of foundering are similar to those expected for active

lithospheric extension or rapid thermal erosion of the base of

the lithosphere. Rapid lithospheric thinning by extension also

results in the replacement of cold (and hence dense) litho-

spheric mantle with hot asthenosphere (Figure 1(f)), leading

to sustained high elevations. Lithospheric thinning will also

give rise to basaltic magmatism and enhanced surface heat flux.

The Basin and Range Province in western North America is a

good example where extension-related geologic phenomena

are similar to those predicted in the aftermath of foundering.

These ambiguities will be highlighted below in the discussion

of various cases studies. Lithosphere extension may itself be a

natural by-product of deep lithosphere foundering. The impor-

tant distinguishing feature for the purposes of this review is

whether the mafic lower crust sinks and detaches from the

lithosphere, or whether it is laterally advected during extension

but otherwise remains attached to the continental crust.
4.12.4 Case Studies

It is impossible to summarize all instances where foundering

has been suggested. For example, lithospheric foundering

has been invoked in Mongolia (Cunningham, 2001), Tibet

(Chen and Tseng, 2007; Harrison et al., 1992; Houseman

and Molnar, 1997; Turner et al., 1996), the Wallowa Moun-

tains in Oregon (Hales et al., 2005), Papua New Guinea (Cloos

et al., 2005), Carpathians (Knapp et al., 2005), Colorado

Plateau (Bird, 1979), much of western North America (West

et al., 2009), the Transverse Ranges in California (Houseman

et al., 2000; Humphreys and Clayton, 1990), the Appalachians

(Nelson, 1992), the Grenvillian belt (Mosher et al., 2008), the

North China Craton (Section 4.12.4.4), the Sierra Nevada in

California (Section 4.12.4.1), the Andes (Section 4.12.4.2),

the western Mediterranean (Section 4.12.4.3), and on Venus

(Elkins-Tanton et al., 2007). It has also been suggested to explain

trench-parallel seismic anisotropy beneath arcs (Behn et al.,

2007). Most of the evidence for deep crustal/lithosphere foun-

dering is circumstantial, occasionally leading to contrived

interpretations, so it is possible that some suggestions of

deep foundering, especially deep crustal foundering, will be

proven wrong in the future. As noted above, it is difficult to

distinguish the aftermath of foundering from the effects of

lithospheric extension. Below, the Sierra Nevada, the Andes,

the western Mediterranean, and the North China Craton are

used as case studies of possible lower crustal or deep litho-

sphere foundering. The first two cases probably involve com-

position-driven instabilities associated with the formation of

dense, mafic cumulates during arc magmatism. In these in-

stances, foundering has a direct impact on the compositional

evolution of the continental crust. The last two cases involve

deep lithospheric processes, possibly related to thermally driven

density instabilities associated with collisional orogens, where

removal of deep lithospheric mantle is implicated. In all cases,

the ‘stories’ are not set in stone; hence, outstanding unresolved

problems or debates are highlighted as best as possible.
4.12.4.1 Sierra Nevada, California

The Sierra Nevada, California (Figure 14), may be one of the

clearest case studies in which mafic lower crust has foundered.

The Sierra Nevada’s current high elevation is not compensated

by a thick crustal root, as evidenced by its shallow Moho

(Ducea and Saleeby, 1996; Ruppert et al., 1998; Wernicke

et al., 1996). The high topography is thought to be recent

(late Miocene to Pliocene) because of the westward tilting of

Eocene paleo channels along the western slope of the moun-

tain range (Huber, 1981; Unruh, 1991). Seismic studies show

vertically trending high-velocity anomalies beneath the Great

Valley and western foothills in the southern part of the Sierras

(Boyd et al., 2004; Yang and Forsyth, 2006; Zandt and

Carrigan, 1993; Zandt et al., 2004). These observations have

been taken as indirect evidence that a thick crustal root was

recently removed and the current high elevations are sustained

by the return flow of hot asthenospheric mantle. The high-

velocity anomalies are interpreted to represent foundering

lower crust or deep lithosphere (Jones et al., 2004; Saleeby

et al., 2003). Broadly consistent with this interpretation is the
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Figure 14 Postdelamination magmatism from the Sierra Nevada, California, USA. (a) Map of the Sierra Nevada region shows locations of Miocene to
Pleistocene alkali and ultrapotassic eruptives, some of which host mantle and lower crustal xenoliths. These lavas erupted through the Sierra Nevada
Batholith, remnants of a Cretaceous continental magmatic arc. Foundering of mafic lower crust is thought to have occurred beneath the region
now denoted by late Cenozoic ultrapotassic volcanism. (b) Inset figure shows the results of thermobarometry applied to those magmas that are
undoubtedly derived from a peridotitic mantle source (see Figure 15). These are the <1-Ma lavas in the eastern part of the Sierra Nevada (Big Pine and
Coso volcanic fields; black circles) and the Mojave block in southern California (Amboy and Pisgah; open circles). P–T calculations could not be
done on the central Sierran ultrapotassics because they may not derive solely from peridotitic sources (see Figure 15). These P–T estimates should
reflect the temperature and depth of melting within peridotitic mantle and therefore they place constraints on the thickness of the lithosphere.
These peridotite-derived magmas come from depths between 50 and 80 km and overlap the depth range over which garnet-pyroxenites were formed in
the Cretaceous Sierran arc (see Figure 2(a)). This implies that most of the Sierran pyroxenites were removed by 1 Ma. P–T calculations use the
thermobarometer of Lee et al. (2009) with data from the literature (Beard and Glazner, 1995; Farmer et al., 2002; Feldstein and Lange, 1999; Mordick and
Glazner, 2006; Van Kooten, 1980, 1981). Solidi are from Hirschmann (2000) and Katz et al. (2003). Gray lines represent solid mantle adiabats for
given mantle potential temperatures.
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flare-up of small-volume, low-F alkali basalt and ultrapotassic

magmas in the Pliocene, which have been argued to represent

decompression melts generated just after root foundering

(Figures 14 and 15(a); Farmer et al., 2002; Jones et al., 2004;

Manley et al., 2000; Van Kooten, 1980, 1981).

The strongest line of evidence for recent removal of the root

beneath the high Sierras comes from secular changes in xeno-

lith demographics (Ducea and Saleeby, 1996) and inferred

thermal state of the lithosphere. The Cretaceous Sierra Nevada

batholith was once underlain by a thick layer of mafic cumu-

lates in the form of garnet-pyroxenites making up the lower

crust and parts of the lithospheric mantle (Figures 2(a) and 3;

Dodge et al., 1988; Ducea, 2001, 2002; Ducea and Saleeby,

1996, 1998b; Lee et al., 2006, 2007; Mukhopadhyay and
Manton, 1994). These cumulates have been shown to be pet-

rogenetically linked to the granodioritic plutons dominating

the batholith (Ducea, 2002; Ducea and Saleeby, 1998b; Lee

et al., 2006, 2007). The cumulates can be found as xenoliths in

late-Miocene (8.3 Ma) alkali basalts, which are associated with

the end of subduction and initiation of Basin and Range style

lithospheric extension (Figure 14). Thermobarometric studies

of late Miocene-hosted xenoliths indicate that these cumulates

derive from depths up to �90 km and record equilibration

temperatures <800 �C (Figure 14; Chin et al., 2012; Ducea

and Saleeby, 1996, 1998b; Mukhopadhyay and Manton,

1994). The deeper cumulates are interleaved with spinel and

garnet-bearing spinel peridotites, most of which also record

temperatures below 800 �C (Ducea and Saleeby, 1996, 1998b;

Figure&nbsp;14
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Lee et al., 2001a). By contrast, Pliocene and younger basaltic

magmas in the Sierra Nevada do not contain any garnet-pyrox-

enite xenoliths. Instead, these basalts contain spinel peridotites

equilibrated at temperatures of >1000 �C, which is clear evi-

dence that the cold, pyroxenite-laden root of the Sierras was

removed and replaced by asthenospheric mantle between the

late Miocene and Pliocene (Ducea and Saleeby, 1996, 1998b;

Lee et al., 2001a). Finally, as will be shown later, thermobaro-

metric constraints on the late-Pliocene and younger basaltic

magmas suggest that they derived from peridotites melting at

depths between 50 and 70 km, further indicating that much of

the thick and cold garnet-pyroxenite dominated root has been

replaced by hot asthenospheric mantle (Figure 14).

The geologic history of the deep Sierran lithosphere can

be summarized as follows (see also Saleeby, 2003; Saleeby

et al., 2003): A thick, mafic root was generated in the mid- to

late Cretaceous as the cumulate complement of the Sierran

granitoids. This thick cumulate layer cooled, perhaps by ‘refrig-

eration’ imparted by the subducting Farallon plate. In the

Miocene, the Pacific–Farallon ridge collided with the North

American plate, terminating subduction and resulting in the

generation of an ocean–continent transform fault. This

resulted in the opening of a ‘slabless’ asthenospheric window

beneath the Sierra Nevada by the late Miocene. Heating from

below may have helped to weaken the cold mafic root, prep-

ping it for convective removal. Large-scale removal of the pyrox-

enite-dominated root appears to have culminated in the Pliocene

(�3.5 Ma), resulting in a resurgence in small-volume alkali

basaltic magmatism (Figures 14 and 15) and surface uplift,

which continues even today. Downwelling may still be ongo-

ing in the western and southern Sierras and may be imparting

dynamic topography in the form of localized basins in the

southern portion of the Great Valley (Saleeby et al., 2003).

The removal mechanism of the Sierra mafic root is still far

from understood. What is clear is that the negative buoyancy

was dominantly compositional. If the interpretations of seis-

mic studies are taken at face value, it would seem that the mafic
root is being removed asymmetrically. One possibility is that

the root is ‘draining’ via a Rayleigh–Taylor-type instability

toward the west (Boyd et al., 2004; Zandt et al., 2004). Another

possibility is that the root is peeling away and propagating

westward. This scenario involves wholesale delamination

(cf. Bird, 1979), which initiated along a crustal weak zone

and is maintained by intrusion of asthenospheric mantle

from the Basin and Range extensional province to the east

(Le Pourhiet et al., 2006). Yet another possibility is that this

high-velocity anomaly represents ancient fragments of Farallon

plate rather than actively detaching Sierran arc lithosphere, as

recently suggested by Forsyth and Rau (2009) (see also

Schmandt and Humphreys, 2011; Wang et al., 2009).

A perplexing question is why root removal occurred so long

(�70 Ma) after its formation in the Cretaceous? Given the high

densities of garnet-pyroxenites (Figure 4), this root should

have foundered soon after its formation. A possible explana-

tion is that refrigeration of the root by the Farallon plate made

the root too viscous to founder, and only when subduction

ended was this constraint removed. This begs the question of

whether the Sierran case study is unique. However, some stud-

ies suggest that the formation and removal of mafic roots in arc

systems may be cyclic. DeCelles et al. (2009) argued that the

major fluxes in Sierran arc magmatism are linked to enhanced

periods of lithospheric shortening. They suggest that thick

layers of mafic cumulates/restites form during this time until

a critical thickness is reached and the dense root founders,

providing room for a second phase of shortening and magma-

tism. If correct, these ideas suggest that lithospheric foundering

and magmatism may be intimately linked. This is consistent

with suggestions by Lee et al. (2000, 2001a), on the basis of the

young Os isotopic composition and thermal histories of Sier-

ran peridotite xenoliths, that a major lithospheric removal

event accompanied or was the precursor to Cretaceous arc

magmatism. In any case, additional xenolith studies in other

parts of the Sierra Nevada should be carried out to assess the

robustness of the above conclusions.

Figure&nbsp;15
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4.12.4.2 The Andes

The Andean mountain chain is an ocean–continent subduc-

tion zone with an active continental magmatic arc, presumably

the modern analog of the Cretaceous Sierra Nevada continen-

tal arc magmatism discussed above (Oncken et al., 2006;

Figure 16). Removal of lower crust and lithospheric mantle

has been suggested to have recently occurred (Miocene to

present) beneath the central Andes (10–30 �S) (Garzione

et al., 2008; Kay and Kay, 1993; Kay et al., 1994). This segment

of the Andes is dominated by the �500-km-wide Altiplano–

Puna Plateau, which in some places reaches peak elevations of

6 km (Oncken et al., 2006). The Altiplano is flanked to the

west by an active magmatic arc (the Central Volcanic Zone of

the Western Cordillera) and to the east by fold-and-thrust belts

in Paleozoic sediments (Eastern Cordillera). The presence of

arc magmatism is consistent with a steeply subducting Nazca

plate, which implies the presence of an asthenospheric mantle

wedge. By contrast, flat subduction occurs to the north and

south of the Central Volcanic Zone and is associated with a lack

of arc magmatism. The Central Andes segment also appears to

have undergone more significant (300–350 km) shortening of
the South American Plate than the northern and southern

Andes (Oncken et al., 2006).

Circumstantial evidence for recent removal of lower crust

derives mainly from the fact that crustal thickness does not

correlate with elevation. In the central Altiplano, the Moho

depth as inferred from P-wave to S-wave converted seismic

phases is �70 km, but in the Puna part of the plateau, it is only

�50–55 km (Yuan et al., 2000, 2002), indicating that the high

elevations are not supported by a deep crustal root. Seismic

tomography and attenuation studies indicate low P-wave veloc-

ities and high P-wave attenuation beneath the Puna region,

which suggests the presence of hot, asthenosphericmantle rather

than a deep, cold crustal root (Schurr et al., 2006). The inferred

seismic velocity structure of the crust suggests that most of the

crust is felsic (Beck and Zandt, 2002). Late Miocene to Pliocene

basaltic lavas in the Altiplano and Puna regions are thought to

represent partial melts of the asthenospheric mantle (Carlier

et al., 2005; Kay and Kay, 1993; Kay et al., 1994). These obser-

vations have been interpreted to indicate that portions of

the deep crustal root beneath the Central Andes have recently

been removed and replaced by hot asthenospheric mantle

Figure&nbsp;16
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(seeGarzione et al., 2008 for review). Themechanismof removal

is not known, but numerical models suggest that high-density

garnet-pyroxenite lower crust is needed to drive convective

removal of the lower crust (Sobolev and Babeyko, 2005).

Paleo-elevation studies of pedogenic carbonates in the Altiplano

using stable isotopes show that 2.5–3.5 km of uplift occurred

between �6.8 and 10.3 Ma, corresponding to an uplift rate

of �1 km Ma�1 (Garzione et al., 2006; Ghosh et al., 2006).

Garzione et al. (2006) and Ghosh et al. (2006) used these

observations to corroborate the suggestion that uplift most

likely resulted from the foundering of a dense garnet-pyroxenite

root rather than from crustal shortening because crustal short-

ening inmost of the Central Andes appears to have ended in the

last 10 Ma (McQuarrie, 2002). However, crustal shortening

probably did not end in the last 10 Ma. Oncken et al. (2006)

show thatmuch of the upper crustal shortening appears to have

migrated trenchward toward the narrow sub-Andean belt in the

last 10 Ma. In addition, Sobolev and Babeyko (2005) show

with numerical models that much of the recent uplift, while

not accommodated by widespread upper crustal shortening,

can be linked to enhanced shortening in the lower crust.

These authors argue that the primary driver of high elevations

in the central Andes is the westward drift of South America, and

not deep crustal foundering alone. Nevertheless, as pointed out

by these authors, deep crustal foundering may be critical in

weakening the remaining continental lithosphere, allowing

shortening to occur. In any case, the similarity of the Andes

with the Cretaceous Sierra Nevada batholith suggests that deep

garnet-pyroxenite cumulates may also be present beneath the

Andes. Garnet-pyroxenite cumulates are known to occur in the

lower crust of the northern Andes (as sampled by lower crustal

xenoliths, Rodriguez-Vargas et al., 2005; Weber et al., 2002).
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4.12.4.3 Alboran Region, Western Mediterranean

A number of geological and geophysical features in the western

Mediterranean (the Alboran region; Figure 17) suggest a dy-

namic deep lithosphere, prompting the idea of lithospheric

thinning. This region is associated with collision between

Africa and Europe, but, paradoxically, much of the region

(Alboran Sea) is underlain by thinned lithosphere, indicating

that extension may be occurring (Maldonado et al., 1999; Platt

and Vissers, 1989). The Rif-Betic mountains define the north-

ern (Spain) and southern (Morocco) flanks of the extended

Alboran region and trace an arc of mountains that wraps

westward across the Strait of Gilbraltar. The Ronda and Beni

Bousera peridotite massifs, exposed in the Rif-Betics, appear to

have been exhumed to crustal depths in the late Oligocene–

early Miocene. Thermobarometric studies of the massif and

surrounding metamorphic aureoles suggest that these massifs

were emplaced while they were still at high temperatures

(�1000 �C) characteristic of the mantle (Platt and Vissers,

1989; Platt et al., 1998). Exhumation of these massifs is man-

ifested as metamorphic core complexes, which occurred under

high thermal gradients. These observations suggest significant

extension under the Rif-Betics as well, despite the fact that they

are presently at high elevations.

Magmatism in the Alboran region is unusual (Figure 17).

It spans the lower Oligocene (�35 Ma) to the Pleistocene

(0.65 Ma) (Duggen et al., 2003, 2004, 2005; Turner et al.,

1999) and appears to be associated with high surface heat

flux (Polyak et al., 1996). The spatiotemporal trends of

magmatism are more complicated than those expected for a

simple plate boundary. From �35 to 20 Ma, the region was

marked by tholeiitic magmatism (Malaga dikes) characterized
Morocco
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by nonradiogenic Sr and radiogenic Nd isotopes and inter-

preted to derive from mid-ocean ridge-type asthenospheric

mantle (Turner et al., 1999). From �15 to 4 Ma, the region

was characterized by tholeiitic, calc-alkaline, and shoshonitic

series magmas (basaltic to rhyolitic), characterized by radio-

genic Sr and nonradiogenic Nd isotopes and relative enrich-

ments in fluid-mobile trace elements. These features have been

interpreted as subduction-related signatures (Duggen et al.,

2003, 2004) or crustal contamination (Turner et al., 1999).

Cordierite-bearing dacitic magmas, representing partial melts

of crustal origin, also occur within this time window. A transi-

tion in the composition of magmas occurs at �6–4 Ma. Alkali

basalts, many containing mantle xenoliths (from the plagio-

clase stability field, Shimizu et al., 2008), erupted on the flanks

of the Alboran domain after 6 Ma. These basalts are character-

ized by nonradiogenic Sr and radiogenic Nd isotopes and

ocean island-type trace-element abundance patterns, suggest-

ing a fundamental change in the composition of the mantle

source (Duggen et al., 2003, 2004).

It is generally agreed that the above observations are the

manifestation of deep lithospheric mantle removal although

the exact mechanisms and timing are debated. Details of

the debate can be found elsewhere (Duggen et al., 2003,

2004; Platt and Houseman, 2003; Platt and Vissers, 1989;

Platt et al., 1998; Turner et al., 1999). In brief, Platt and Vissers

(1989) suggest that the Alboran domain underwent contrac-

tion>30 Ma, resulting in the formation of a thickened thermal

boundary layer, which subsequently foundered via a Rayleigh–

Taylor-type instability. The asthenospheric mantle return flow

associated with removal of this thickened boundary layer culmi-

nated in uplift and magmatism in the Oligocene and Miocene.

Platt and Vissers (1989) suggest that the topographically high

Alboran domain would have gravitationally collapsed, driving

extension in an active orogenic belt. Duggen et al. (2003, 2004,

2005) suggest a slightly different view. They suggest that most of

the lavas prior to 5 Ma erupted in a subduction zone related

to westward rollback of an east-dipping Tethyan oceanic litho-

sphere. They suggest a more recent removal of subcontinental

lithospheric mantle beneath Spain and Morocco, driven not by

orogenic thickening but by edge-driven convection associated

with mantle wedge flow in a retrograding subduction zone.

Interestingly, slab rollbackmay have helped to close the western

Mediterranean seaway, resulting in the late Miocene desiccation

of the Mediterranean (‘Messinian crisis’) (Duggen et al., 2003).

Seismic tomography and seismicity indeed show a deep high-

velocity anomaly beneath the region and deep seismicity

separated from the crust by a seismicity gap (Calvert et al.,

2000; Grimison and Chen, 1986; Gutscher et al., 2002; Seber

et al., 1996). Although there are hints that the high-velocity

anomaly dips toward the east, and is thus suggestive of a sub-

ducting slab, more detailed seismic studies are needed to move

forward. In summary, it is reasonably clear that the continental

lithospheric mantle was involved in recycling in the Alboran

region, but the mechanisms are still debated. There is no evi-

dence, to date, that the LCC was involved in such recycling.
4.12.4.4 North China Craton

Another place where lithospheric recycling has been proposed

is the North China Craton (Figure 18). The crustal basement is
Archean (�2.7 Ga), but the underlying lithospheric mantle,

while variable in age, appears to be, in general, post-Archean.

Diamond-bearing kimberlites erupted through the eastern part

of the craton in the Paleozoic (�460 Ma), indicating the pres-

ence of a thick (>150 km) lithospheric keel at that time (Xu,

2001). By contrast, Cenozoic basalts erupted through the

same region contain peridotite xenoliths from much shallower

depths (spinel peridotites) with Phanerozoic Re–Os model

ages (Chu et al., 2009; Gao et al., 2002; Wu et al., 2003,

2006). Thermobarometric constraints from peridotites hosted

in the Cenozoic basalts in the eastern part of the craton indi-

cate that, by the Cenozoic, the lithosphere had thinned

to <80 km (Fan and Hooper, 1989; Fan et al., 2000; Menzies

et al., 2007; Rudnick et al., 2004; Xu, 2001). The eastern craton

is also characterized by high surface heat flux (see Menzies

et al., 2007), thinner lithosphere (Chen et al., 2008), and

anomalously low shear-wave velocities below the seismic lid

(Zhang, 1998). Collectively, these observations indicate that

cratonic lithosphere was thinned, most likely in the Jurassic or

Cretaceous. However, the mechanism remains unclear. Many

of the above features are consistent with foundering of litho-

spheric mantle, but could also be explained by lithospheric

extension or small-scale convective thinning at the base of the

lithosphere, perhaps in response to flow associated with sub-

duction of the Pacific plate (Menzies et al., 2007; Xu, 2001).

However, the complete lack of Archean peridotite xenoliths in

the young basalts of the region has been used to argue for

wholesale removal of Archean lithospheric mantle, which

seems more consistent with thinning by one or more delami-

nation events rather than by extension (Chu et al., 2009; Gao

et al., 2002; Wu et al., 2003, 2006).

For the purposes of this review, the question of interest is

whether lithospheric thinning was accompanied by lower

crustal recycling. Gao et al. (1998a,b) noted that the composi-

tion of the crust in the North China Craton is too felsic and

depleted in various compatible trace elements to have been

derived directly from themantle, and therefore suggested that a

mafic lower crust was missing. Based on mass-balance con-

straints, they suggested that this missing mafic reservoir was

similar in composition to the ‘eclogites’ of the Dabie–Sulu

ultrahigh-pressure terrane and therefore argued that much of

the original mafic lower crust beneath the craton foundered.

These conclusions, however, provide no direct constraint on

when foundering occurred. Gao et al. (2004) reported reverse-

zoned phenocrysts and Paleoproterozoic inherited zircon

xenocrysts in Ni-rich, high-Mg/(MgþFe) Mesozoic magmas

with ‘adakitic’ signatures (e.g., high Sr/Y), and provocatively

suggested that such magmas represent partial melts of sinking

‘eclogitic’ crust. To explain the high Mg# and Ni contents, they

suggested that these liquids ascended and reacted through the

mantle before erupting. More recently, Gao et al. (2008) report

basaltic magmas with major and trace-element signatures sug-

gestive of a hybrid eclogite–peridotite origin, which has been

used to corroborate the suggestion of delamination. In any

case, because of the fast rates at which garnet-pyroxenite

blobs founder, this interpretation requires that foundering of

the lower crust was almost contemporaneous with the em-

placement of these Mesozoic ‘adakitic’ magmas at �160 Ma.

It is worth noting that some geochemical features of ‘adakitic’

rocks, including reverse zonation, can be explained by mixing
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of lower crustal melts with recharging basaltic melts (Streck

et al., 2007), so not all ‘adakitic’ magmas should necessarily be

interpreted as melts derived from sinking garnet-pyroxenites.
4.12.5 The Composition and Mass Fluxes of Lower
Crustal Foundering

4.12.5.1 Where Is Mafic Lower Crust Generated?

Quantifying the time-integrated mass flux of delaminated

lower crust is difficult because direct observational constraints

are rare or subject to interpretation. One tractable approach is

to use mass-balance constraints based on the fact that crustal

compositions are felsic and require a missing mafic comple-

ment, which presumably foundered. Mass-balance approaches,

however, are devoid of geology and therefore do not constrain

when or how the mafic complement was removed. What is clear

is that only mafic rocks stabilize garnetþpyroxene-rich rocks

dense enough to founder, and thus, any estimate of lower

crustal foundering rates must first identify when and where

such mafic rocks form.

Mafic rocks can be formed by direct magmatic underplat-

ing, crystal accumulation, or as the residues of melt depletion.

Foundering of magmatically underplated basalts is not partic-

ularly interesting from a petrogenetic point of view if the basalt
did not undergo differentiation. Crystal accumulation can

occur wherever magmas traverse a thermal boundary layer,

resulting in cooling and crystallization along vein or dike

margins. Such processes should occur in arc and intraplate

environments, though the extent of differentiation appears to

be much greater in the former as evidenced by the more

evolved nature of arc magmas. Formation of restites can also

occur in arc and intraplate environments if recently emplaced

basalts are remelted by new magmatic additions. Restites can

further form during collisional orogeny, where depression of

geotherms to greater depths leads to lower crustal heating and

partial melting of preexisting crust in the garnet-stability field.

These residues would evolve towardmafic bulk compositions if

high extents of melt extraction were possible. Of these scenar-

ios, generation of restites and cumulates in arc environments is

probably the most important because the trace-element com-

position of the continental crust is largely dominated by an

arc-like signature. This is fortunate because the amount of

mafic restites/cumulates generated in arcs is reasonably well-

constrained. There are few constraints on the proportions of

mafic differentiates in intraplate magmatic systems and colli-

sional orogenies, making it difficult to discuss these scenarios

quantitatively. According to Barth et al. (2000), the intraplate

contribution to continental crust is <5–20%, so recycling of

intraplate-related cumulates is of secondary interest.
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Figure 19 Whole-rock Mg# (atomic Mg/(MgþFeT)) versus SiO2 for rocks from (a) the Cretaceous Kohistan intraoceanic arc, (b) the Cretaceous Sierra
Nevada continental arc, and (c) the Jurassic Talkeetna intraoceanic arc. Open circles in (a) and (b) represent plutonic rocks from each of the localities. In
(c), the open circles represent intrusive rocks from Talkeetna, and the open triangles represent lavas from Talkeetna. Shown for reference are small gray
circles for rocks (dominantly extrusive) from the active Cascades volcanic zone in the northwestern United States (using the GEOROC database; georoc.
mpch-mainz.gwdg.de/). In (a–c), large symbols refer to rocks that have a demonstrated petrogenetic origin as cumulates. Star represents a putative
primary mantle-derived arc basalt (Kelemen et al., 2003). Blue arrow represents an inferred liquid line of descent from a primary arc basalt. Red arrow
shows the crystal line of descent as inferred from the cumulate rocks. (d–f) show whole-rock Sc versus MgO for the same rocks in (a–c). Star shows the
Sc and MgO content of primitive arc basalt. Note that evolved liquids mostly have low Sc and Mg contents, which cannot be explained by olivine
segregation, but can be explained by segregation of high-MgO and low-MgO garnet-pyroxenites. Datasets are from the literature (Dhuime et al., 2007,
2009; Greene et al., 2006; Jagoutz, 2010; Jagoutz et al., 2009; Kelemen et al., 2003; Lee et al., 2006, 2007).
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4.12.5.2 Arc Magmatism as a Case Study of Lower
Crustal Recycling

There are three paleo-arc systems where deep crustal and lith-

ospheric mantle sections are accessible in conjunction with

their magmatic counterpart (Figure 19). These include the

Cretaceous Sierra Nevada and Peninsular Ranges continental

arc in California and Baja California (Coleman and Glazner,

1997; Coleman et al., 1992; Ducea, 2001, 2002; Ducea and

Saleeby, 1998a,b; Lee et al., 2001a, 2006; Saleeby et al., 2003;

Sisson et al., 1996), the Cretaceous Kohistan intraoceanic arc

in Pakistan (Garrido et al., 2006; Jagoutz, 2010; Jagoutz et al.,

2007, 2009), and the Jurassic intraoceanic Talkeetna arc in

southcentral Alaska (DeBari and Sleep, 1991; Greene et al.,

2006; Kelemen et al., 2003). The deep crust and lithospheric

mantle are accessed in the Sierras as xenoliths in late Miocene

basalts (see above discussion), whereas in Kohistan and

Talkeetna, the deep crust is exposed in exhumed and tilted

sections. Relevant geologic background can be found in the

above-cited references.

Figure 19(a)–19(c) shows whole-rock Mg# (atomic

Mg/(MgþFeT), where FeT represents total Fe) versus SiO2 for

magmas and cumulates for the Sierra Nevada, Kohistan, and

Talkeetna (Cascades arc lavas are shown in the Talkeetna panel
for comparison). A hypothetical primary arc basalt (Kelemen

et al., 2003) is shown for reference. Being minimally differen-

tiated, primary arc basalts should have Mg# of �0.72 as de-

fined by Fe/Mg exchange equilibrium between the liquid and

mantle peridotite (Mg# �0.89) (see Hanson and Langmuir,

1978; Langmuir et al., 1992; Roeder et al., 1979). They have

�50 wt% SiO2, which reflects the intermediate pressures of

melting (1–2 GPa) associated with arc magmatism (Lee et al.,

2009). Assuming this primary basalt to be parental to the

magmas shown in Figure 19(a)–19(c), the most striking fea-

ture is that the majority of magmas in the Sierras and Kohistan

have Mg# <0.5, even for gabbros and diorites at 50 wt% SiO2

(in Talkeetna, the plutonic rocks also have low Mg#). There is

thus a distinct Mg# gap early in the differentiation history of

these arc magmas, but no such gap is seen with SiO2. This Mg#

gap results from extensive fractionation of ultramafic and

mafic cumulates, at sub-Moho depths. The liquid line of de-

scent inferred from the magmatic differentiation series requires

early removal of cumulates having high MgO and similar SiO2

to the parental magma in order to drive the parental magma to

low MgO and (Mg#) at constant SiO2. Next, the liquid line

of descent appears to kink in the Mg#–SiO2 space toward Si

enrichment at relatively constant Mg#. This vector requires

Figure&nbsp;19
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another stage of fractionation involving the removal of low-

SiO2 cumulates whose mineral assemblages do not fractionate

Mg and Fe.

The cumulates observed in the three arc case studies fit the

complementary crystal line of descent required by the kink in

the magmatic differentiation series described above (Figure 19

(a)–19(c)). The early cumulates are defined by high-MgO

(>14 wt%) pyroxenites (� garnet) and have SiO2 similar to

the parental basalt as a result of high pyroxene to garnet ratios

(Figure 19). These cumulates are followed by low-MgO

(<14 wt% MgO), low-SiO2 cumulates represented by garnet-

rich (>50% gt) clinopyroxenites and hornblende- and plagio-

clase-bearing gabbros (Figures 19). Their low-Si contents result

from the high modal abundance of hornblende or garnet

relative to pyroxene. High-MgO pyroxenites are the expected

cumulates of primary hydrous basalts at high pressure

(>1 GPa) (Müntener et al., 2001), whereas garnet-rich low-

MgO pyroxenites are the expected cumulates of more evolved

hydrous basaltic and andesitic magmas (Alonso-Perez et al.,

2009). Following Lee et al. (2006, 2007), these two cumulate

groups are herein referred to as the high-MgO and low-MgO

pyroxenite/gabbro cumulates, and collectively they define a

vector antithetical to the liquid line of descent in the Mg#–

SiO2 space (Figure 19(a)–19(c)). In addition to these pyroxe-

nite/gabbro cumulates, ultramafic cumulates (dunites and

wehrlites) are reported in the Kohistan section and represent

differentiates even more primitive than the high-MgO pyro-

xenites. Collectively, these ultramafic and mafic cumulates

trace a ‘Z-shaped’ crystal line of descent in the Mg#–SiO2
Ti
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primitive arc basalts (Kelemen et al., 2003), and global upper, lower, and bul
compositions of high- and low-MgO cumulates from the Sierra Nevada (CA),
(Dhuime et al., 2007, 2009; Greene et al., 2006; Jagoutz et al., 2009; Keleme
PM-normalized abundances <1 are compatible and >1 are incompatible with
are plotted so that the MORB abundance pattern decreases smoothly toward
space (Figure 19(a)–19(c); Jagoutz, 2010). However, bec-

ause of the very high MgO and very low SiO2 of dunites,

significant dunite accumulation would impart a strong nega-

tively sloped vector in the liquid line of descent in the

Mg#–SiO2 space. Early Si enrichment is not seen, which in-

dicates that the proportion of dunite accumulation must be

minor relative to that of high-MgO and low-MgO pyroxenite/

gabbros.

The major and minor element composition of the high-

MgO and low-MgO pyroxenite/gabbro cumulates are given in

Table 1, based on compilations from the above-cited literature.

Also presented are the abundances of trace elements, which

behave compatibly (e.g., Ni, Cr, Mg, and Co) or moderately

incompatibly (e.g., Y, Yb, Al, Ca, V, Cu, Sc, Zn, Mn, and Fe)

during melting of peridotitic mantle. These elements are

generally robust to infiltration or retention of small amounts

of melts or fluids, and thus their abundances generally preserve

the original signatures of their magmagenesis. By contrast,

highly incompatible elements are too easily disturbed by

melts and fluids, so they are not included in Table 1. In

Figure 19(d)–19(f), these cumulate compositions are com-

pared to primary arc basalts (Kelemen et al., 2003) and global

continental crust models (Rudnick and Fountain, 1995; Rud-

nick and Gao, 2003) in primitive-mantle (PM) normalized

spidergrams using the normalizing values of McDonough

and Sun (1995). The plotting order of the elements on these

plots was chosen so that the PM-normalized MORB spider-

gram increases monotonically to the right (Figure 20). Ele-

ments whose PM-normalized concentrations are <1 are
)
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compatible and those >1 are incompatible during MORB gen-

esis (mantle melting); thus elements plotting to the right are

more compatible than those on the left. Primary island and

continental arc basalts show the same overall pattern as

MORBs, albeit with slight enrichments in the most incompat-

ible elements, consistent with an origin by partial melting of

peridotitic mantle.

By contrast, global continental crust compositions plotted

in this ordering do not show smooth, normalized elemental

abundance patterns. Al, Y, V, Sc, Cu, Mn, Fe, Co, Cr, and Ni are

substantially lower than MORB for both lower and upper

continental crust models. Because Al, Y, V, Sc, Cu, Mn, and Fe

are moderately incompatible during mantle melting, forma-

tion of continental crust requires at least one additional step of

differentiation wherein these elements become compatible

and fractionate from the system. This in turn implies that

there is a complementary cumulate component that is

enriched in these same elements relative to the parental arc

basalt. High-MgO and low-MgO pyroxenite/gabbro cumulates

show the necessary complementary enrichments in these ele-

ments, particularly when normalized to a primary arc basalt

(Figure 21). Importantly, Al, Y, V, Sc, and Cr are compatible in

one or more of the mineral phases making up these mafic

cumulates (pyroxene, garnet, and amphibole), which explains

their depletions in the residual crust (Figures 20 and 21).

Crustal Mn and Fe depletions can be explained by a combina-

tion of garnet and Fe oxide fractionation, whereas Co and Ni

depletions can be attributed to pyroxene fractionation or

shallow-level olivine fractionation. Cu is incompatible in all

silicate minerals and Fe oxides, but highly compatible in sul-

fides. The coupled depletions in Cu and Sc hint at an intimate

connection between pyroxenite fractionation and sulfide seg-

regation (Lee et al., 2012).
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Figure 21 Same as in Figure 20, but data are normalized to primitive arc ba
are complementary to the average composition of the continental crust.
4.12.5.3 Estimating the Proportion of Mafic Cumulates
Generated during Arc Magmatic Differentiation

One can use mass-balance considerations to estimate the pro-

portions of cumulates and residual crust relative to the parental

basalt. This is done by first assuming that a primitive continen-

tal arc basalt (Kelemen et al., 2003) differentiates into residual

crust and high- and low-MgO pyroxenite cumulates (Table 1).

The mass-balance equations for all the major and minor

element oxides (except for P2O5) are then simultaneously

inverted. For the Sierra Nevada/Peninsular Ranges batholith,

the average composition of the eastern Peninsular Ranges plu-

tons for the residual crust and the average compositions of

high-MgO and low-MgO pyroxenites from the Sierra Nevada

were used (Lee et al., 2007). The eastern Peninsular Ranges data

derive from an equally spaced sampling grid over the batholith,

and hence the average composition is an unbiased areal repre-

sentation of the plutonic part of the batholith. Unbiased esti-

mates of the crust in Talkeetna and Kohistan are not available.

Nevertheless, for Talkeetna, the average composition of felsic

plutons and high-MgO pyroxenites reported in Kelemen et al.

(2003) and the average basal gabbro composition from Greene

et al. (2006) for the low-MgO cumulate end member are used

(Hacker et al., 2008). For comparison, inversion results using

global continental crust for the residual crustal end member are

also shown (Rudnick and Fountain, 1995).

The results are shown in Figure 22 and Table 2. For the

Sierra Nevada/Peninsular Ranges batholith, the parental basalt

differentiates into 16% high-MgO pyroxenites, 50% low-MgO

pyroxenites, and 33% residual crust. For Talkeetna, the paren-

tal basalt differentiates into 15% high-MgO pyroxenites, 61%

gabbros, and 23% residual crust. The greater proportion of

cumulates calculated for Talkeetna is due to the higher Si and
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Figure 22 Proportions of high-MgO cumulates, low-MgO cumulates,
and residual crust formed by differentiation of primitive arc basalt
(Table 1). Proportions are calculated by inverting all major and minor
element oxides using the compositions shown in Table 1. Large circles
are calculated using average plutonic rocks for the residual crust
(see Tables 1 and 2). Small circles show proportions calculated using a
global model of bulk continental crust. Reproduced from Rudnick RL
and Gao S (2003) Composition of the continental crust. In: Rudnick RL
(ed.) Treatise on Geochemistry, vol.3, pp. 1–64. Oxford: Elsevier.

Table 2 Results of mass-balance inversions with respect to
primary arc basalt

Sierra
Nevada/PRB

Sierra
Nevada/
PRB – BCC

Talkeetna Talkeetna
– BCC

Mass balance
High-MgO
pyroxenite

0.17 0.15 0.16 0.15

Low-MgO
pyroxenite/
cumulate

0.50 0.38 0.61 0.49

Felsic crust 0.33 0.47 0.24 0.36
Total 1.00 1.00 1.00 1.00
Residuals (wt%)
SiO2 0.31 0.29 0.09 0.09
TiO2 �0.31 �0.28 �0.50 �0.42
Al2O3 �1.31 �1.17 �0.15 �0.08
FeOT 0.76 0.87 �0.61 �0.34
MnO 0.06 0.04 �0.01 �0.02
MgO �0.93 �0.83 �0.15 �0.12
CaO 0.51 0.23 0.54 0.21
Na2O �0.88 �0.65 �0.67 �0.68
K2O 0.08 0.11 �0.64 �0.14
Sum of
squares

2.1 1.9 1.4 0.92

Calculations (given in fractional mass proportions) in the first two columns assume

Sierran high-MgO and low-MgO pyroxenites as cumulate end members, but the first

column (Sierra Nevada/PRB) assumes average Sierran granitoid as felsic crust end

member and the second column (Sierra Nevada/PRB – BCC) assumes global bulk

continental crust (BCC) as felsic end member. Calculations in the last two columns use

Talkeetna high- and low-MgO cumulates as end members. Left column (Talkeetna)

assumes Talkeetna plutons as felsic end member and right column (Talkeetna-BCC)

assumes BCC as felsic crustal end member. Residuals for each oxide are given in wt%.

Sum of squared residuals (wt%2) are also shown.
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lowerMg of the gabbros compared to the low-MgO pyroxenites

in the Sierras, and this may in part be related to differences in

average pressures of fractionation (higher in continental arcs,

which would favor garnet and lower Si cumulates). In any

case, these inversions must be evaluated with caution because

uncertainties associated with average cumulate and residual

crust compositions are large and unquantifiable because of

sampling bias. In addition, erosional removal of much of the

volcanic part of the crust is not considered in these calcula-

tions. The only robust conclusion that can be made here is that

the total proportion of cumulates is likely to be >50%. We can

also conclude that low-MgO cumulates dominate, as high-

MgO cumulates make up 20–30% of all cumulates. Given

that the seismically fast high- and low-MgO cumulates cannot

reside above the seismic Moho, considerable differentiation

must occur well before arc magmas reach the traditionally

defined crust (Moho). Most of these cumulates must be

recycled back into the mantle in order to explain the lack of

seismic evidence for mafic rocks beneath the continental

Moho (Niu and James, 2002) and the low proportions

of pyroxenites or cumulate peridotites relative to residual pe-

ridotites in many, but not all, continental xenolith suites

(cf. Wilshire et al., 1988). The above estimates (>50%) of

the amount of mafic cumulates formed and ultimately re-

moved is consistent with similar approaches based on major

element mass balance, though the two types of pyroxenites

were not considered (Ducea, 2002). In an independent ap-

proach based on mass balance using Th and La, Plank (2005)

showed that 25–60% of the juvenile crust is differentiated into

cumulates/restites that eventually founder. Thus, regardless of

the uncertainties in these calculations, a considerable propor-

tion of arc basalts differentiates into mafic cumulates and

restites to form the continental crust.
4.12.5.4 Volume Flows

The global recycling rate of mafic lower crust in arcs can be

estimated by multiplying the global production rate of primi-

tive arc basalt by the above-estimated cumulate fraction.

Taking an arc magmatic production rate per unit arc length of

50–150 km3 km�1 Ma�1 (Jicha et al., 2006) and global sub-

duction zone length of 51310 km (Bird, 2003) yields a global

arc magma production rate of 2.6–7.7 km3 year�1, which

translates into 1.5–4.6 km3 year�1 of mafic lower crustal for-

mation if a cumulate fraction of 60% is assumed (note that

density corrections have not been applied). These volume

flows can be placed into better context by comparing them

with other volume flows (Table 3 and Figure 23). Oceanic

crust production rate is �23 km3 year�1 assuming a crustal

thickness of 7 km and a global areal production rate of oceanic

crust of 0.0953 m2 s�1 (Bird, 2003). Volume flow rates can be

expressed relative to the global oceanic crust production rate.

Flow rates are shown in Table 3 for published estimates of

global sediment subduction (Clift et al., 2009; Plank and Lang-

muir, 1998), and subduction erosion (Von Huene and Scholl,

1991) as well as lower crustal foundering associated with

continent–continent collision (Clift et al., 2009). Detailed

analyses of these mass flows are beyond the scope of this

review, but discussions can be found in Plank and Langmuir

(1998). In Figure 23, these published flow rates are shown

Figure&nbsp;22


Table 3 Mass flows

References km3year�1 Oceanic crust normalized

Production
Oceanic crust (7 km thickness) Bird (2003) 22.9 1
Arc magma Jicha et al. (2006) 2.6–7.7 0.11–0.33
Recycling
Sediment subduction Plank and Langmuir (1998) 0.5–0.07 0.02–0.03
Sediment subduction Clift et al. (2009) 1.65 0.07
Subduction erosion Von Huene and Scholl (1991) 1.3–1.8 0.06–0.07
Orogenic ‘delamination’ Clift et al. (2009) 1.5 0.07
Arc cumulate ‘delamination’ (Xcum¼0.6) This study 1.5–4.6 0.07–0.2
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Figure 23 Mass flows normalized to oceanic crust production rate of
23 km3 year�1 based on parameters taken from Bird (2003) and
assuming a 7-km-thick crust (oceanic crust¼1). Positive corresponds
to production and negative corresponds to recycling. Arc magma
production rate is taken from Jicha et al. (2006) and multiplying by the
global length of subduction zones (Bird, 2003). This number was
multiplied by 0.6 to obtain the arc cumulate mass flow. Sediment
recycling rates are taken from Plank and Langmuir (1998) and Clift et al.
(2009), the former denoted by ‘P&L’ and the latter denoted by ‘C.’
Subduction erosion rate is taken from Von Huene and Scholl (1991).
Lower crustal recycling rate during collisional orogeny taken from Clift
et al. (2009). ‘Error’ bars represent minimum and maximum bounds of
estimated flows.
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normalized to oceanic crust production: magmatic arc produc-

tion is �þ0.2, sediment recycling is �0.02 to 0.07, subduction

erosion is �0.07, orogenic lower crustal foundering is �0.07,

and recycling of mafic lower crust beneath arcs (this study) is,

on average, �0.13 times that of oceanic crust production

(where negative values denote recycling). Although all of

these flow rates have large uncertainties, two conclusions can

be drawn. First, removal of mafic lower crust in arcs exceeds all

other recycling rates, including that estimated for lower crustal

recycling during collisional orogenies. Second, the total flow

rate of recycling mafic lower crust is comparable to that of arc

magma production. Because these flow rates are constrained

from <100-Ma geologic processes, extrapolating back in time

may be perilous.
4.12.6 Fate of Recycled Mafic Lower Crust

At 20% of the global oceanic crust subduction rate, recycling of

mafic lower crust in arc settings will have an important effect

on the generation of major-element heterogeneities in the

mantle. In terms of trace elements, they are likely to be impor-

tant for the compatible to moderately incompatible elements

only. Because of the strong density jump associated with the

g-olivine to perovskite phase transition at 660 km depth, garnet-

pyroxenites without stishovite (some low-MgO cumulates)

might be expected to become density-neutral at the bottom of

the transition zone (440–660 km) and never sink into the lower

mantle. Indeed, a mechanical mixture of garnet-pyroxenite and

peridotite seems necessary to explain the anomalously high

gradient of seismic velocities with depth in the transition

zone (Cammarano and Romanowicz, 2007; Xu et al., 2008).

If, however, the pyroxenites contain stishovite, as would be the

case for MORB-type eclogites and possibly high-MgO pyroxe-

nites, they may be able to penetrate into the lower mantle,

remaining isolated from the upper mantle for long periods.

Penetration into the lower mantle can also occur if pyroxenite

bodies are dragged down by cold downwellings. These pro-

cesses could lead to an irreversible chemical stratification of the

mantle (Anderson, 2002) and, depending on their composi-

tions, could generate positive or negative seismic velocity

anomalies with respect to the peridotitic mantle (Anderson,

2005, 2007). Pyroxenites, however, can rise back to the surface

of the Earth by entrainment into thermal upwellings. In addi-

tion, it has been suggested that, once these pyroxenites heat up

to ambient surroundings, they will undergo significant partial

melting because their solidi are lower than that of peridotitic

mantle (Pertermann and Hirschmann, 2003a,b). If much of

this liquid was retained (as might be expected initially from

low-F melts of pyroxenites, which are felsic), a positive com-

positional buoyancy would be imposed, accelerating the ascent

of the pyroxenite blob (Anderson, 2007). In any case, as long

as pyroxenite bodies remain in or are returned to the upper-

most mantle, their lower solidi render them potential candi-

dates for low-temperature fertile melting anomalies. Because of

the thicker lithospheric lid through which intraplate magmas

must traverse, the proportional contribution of pyroxenite-

to peridotite-derived melts could be far more significant for

intraplate magmas than in mid-ocean ridge environments be-

cause pyroxenites initiate melting at a greater depth than peri-

dotite during adiabatic decompression (Dasgupta et al., 2010;

Figure&nbsp;23
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Herzberg, 2006; Ito and Mahoney, 2005b; Sobolev et al., 2005,

2007). Are the pyroxenite signatures in many intraplate

magmas derived from subducted oceanic crust or from foun-

dered LCC formed in arcs?

A way forward in testing whether recycled arc cumulates are

represented in the source regions of intraplate magmatic cen-

ters comes from recognizing that such cumulates differ funda-

mentally from recycled oceanic (MORB) crust. Arc cumulates

have higher FeOT than MORBs, and at least some have higher

MgO and Mg#. Some arc cumulates, particularly the low-MgO

types, are silica-undersaturated and may give rise to alkali

basalts. In terms of trace elements, arc cumulates are probably

depleted in the highly incompatible elements, whereas sub-

ducted oceanic crust may be enriched in some of these ele-

ments as a result of hydrothermal alteration during residence

on the seafloor (see Alt and Teagle, 1999; Alt et al., 1986;

Chapter 4.16). Subducted oceanic crust is likely to have been

hydrothermally enriched in CO2 (in the form of carbonates),

H2O, Li, Rb, Sr, Pb, and U. Perhaps the most diagnostic

indicators of arc cumulates in the mantle source region will

come from the first-series transition metals, such as V, Sc, Cr,

and Co, because they are enriched in cumulate pyroxenites

relative to pyroxenites of MORB-protolith.

Additional compositional effects are as follows: Trace-

element ratios, such as Nb/U, Nb/La, Nb/Th, and Ce/Pb, are

often used as indicators of continental crust contamination in

magmas or in their mantle source regions (Hofmann, 1997,

2003; Hofmann et al., 1986). This is because the continental

crust is depleted in high-field-strength elements such as Nb

relative to U, La, Th, and Pb. The Nb-depleted character of

continental crust is generally attributed to the retention in

Nb-bearing phases, such as rutile or amphibole, or to the fact

that it is not very soluble in the aqueous fluids that occur

in subduction zones (Barth et al., 2000; Hofmann, 1988;

Hofmann et al., 1986; Kelemen et al., 1993; Klemme et al.,

2005; Rudnick et al., 2000). U, La, Ce, and Th are generally

considered highly incompatible and less affected by retention

in accessoryminerals (thoughmonazite could complicate this).

Pb is considered to be highly mobile in fluids (Hofmann et al.,

1986). Thus, continental crust is generally agreed to be charac-

terized by low Nb/(U,La,Th) and low Ce/Pb compared to

MORBs. Cumulate garnet-pyroxenites, however, are not de-

pleted in Nb because many of these pyroxenites have primary

rutile and have been shown to have excess Nb contents relative

to La, Th, and U (Lee et al., 2006, 2007). Thus, recycling of such

pyroxenites is unlikely to be detected by these conventional

tracers of continent recycling. As for Ce/Pb, the presence of

Cu suggests the presence of sulfide, which, in turn, suggests

the presence of Pb. The exact amount of Pb depends on the

amount of sulfide, so variable Ce/Pb ratios might be expected.

The compositional effects on the time-integrated isotopic

evolution of 87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf, 207Pb/204Pb,
206Pb/204Pb, 208Pb/204Pb, and 187Os/188Os will depend on the

nature of parent/daughter elemental fractionation during the

genesis of arc cumulates. Detailed discussion of these isotope

systems is not of immediate relevance for this review, but some

broad predictions can be made. Because garnet is a primary

magmatic phase in many of the low-MgO pyroxenites, the

cumulates would be expected to have high Lu/Hf ratios for

a given Sm/Nd ratio, leading to decoupling of Hf and Nd
isotopes from the typical mantle array (Blichert-Toft et al.,

1999). Sm/Nd ratios might be expected to be near-chondritic

or slightly higher than chondrite depending on the amount of

garnet, thus 143Nd/144Nd would appear depleted (e.g., radio-

genic) or near-chondritic. Rb/Sr ratios are generally low in

pyroxenes and garnets, so time-integrated 87Sr/86Sr would be

expected to be nonradiogenic, though metasomatic effects

could complicate Sr isotope systematics. High garnet mode

might also be expected to give rise to high Re/Os ratios

(Righter and Hauri, 1998) and radiogenic 187Os/188Os, but as

noted above, many of the cumulates are enriched in Cu, which

suggests sulfide involvement. In such samples, the predicted

effects on Os isotopes could be more complicated. Any sam-

ples that contain sulfide, however, will be characterized by

low U/Pb ratios (because Pb is compatible in sulfides but

incompatible in garnet and pyroxenes), resulting in very low

time-integrated Pb isotopic compositions. This may provide a

simple explanation for why model estimates of the Pb isotopic

composition of the Earth’s mantle seem more radiogenic than

the model estimates of the bulk Earth (Allegre et al., 1995).
4.12.7 Some Useful Petrologic Approaches in
Studying Lower Crustal Recycling

One of the great opportunities of the last decade is the ability to

study deep lithospheric processes from geological, geochrono-

logical, petrological, geochemical, and geophysical perspec-

tives simultaneously. One of the key constraints in testing

whether lower crustal foundering has occurred or is occurring

is the spatial and temporal evolution of the LAB. Detailed

discussions of what the LAB is and how it can be imaged/

inferred by different methods can be found elsewhere (Eaton

et al., 2009; Fischer et al., 2010). For the purposes of this

review, the LAB represents a rheological transition that limits

asthenospheric upwelling and decompression melting. Ther-

mobarometric constraints on mantle and lower crustal xeno-

liths can be used to track the thermal evolution of the deep

lithosphere (Brey and Kohler, 1990). The major element com-

positions of primitive basalts can be used to estimate last

equilibration temperatures (MgO or FeO) and pressures

(SiO2) in the mantle (Lee et al., 2009; Putirka, 2005; Wang

et al., 2002). Additionally, first-series transition metals may be

able to constrain the major element composition of the source

(Humayun et al., 2004; Le Roux et al., 2010; Sobolev et al.,

2005, 2007), which may be useful in understanding how

different parts of the mantle contribute to melting during or

after the foundering process.

As an example, these tools are applied to the alkali and

ultrapotassic basalts thought to be associated with lower

crustal foundering beneath the Sierra Nevada. Le Roux et al.

(2010) showed that Zn/Fe is not fractionated during partial

melting of peridotite because Zn/Fe distribution coefficients

between olivine, orthopyroxene, and basaltic liquid are 1,

and Zn and Fe partitioning between melt and peridotite is

largely controlled by these two phases. Melting of garnet-

or clinopyroxene-rich rocks, however, yields liquids with

high Zn/Fe relative to the source as a result of the low Zn/Fe

distribution coefficients between clinopyroxene and garnet

relative to olivine, orthopyroxene, and melt. Primitive Sierran
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basalts <1 Ma have Zn/Fe identical to that of primitive mantle

and evolve along an olivine-controlled fractionation trend

(constant Zn/Fe with decreasing MgO). By contrast, older ba-

salts (>3 Ma) have higher Zn/Fe for a given MgO content and

also show clinopyroxene-controlled fractionation (Figure 15(b)).

These observations indicate that the <1 Ma basalts are melts

of peridotite, whereas the older magmas require pyroxenite

in the source. One interpretation of these results is that com-

plete removal of the pyroxenite root was not achieved until after

3 Ma even though foundering may have started earlier. Zn/Fe

and other first-series transition metal systematics can also be

used to guide the application of magma thermobarometry.

SiO2-based basalt barometers rely on the silica-buffering

capacity of coexisting olivine and orthopyroxene assemblages,

and therefore require a peridotite source for proper applica-

tion. In addition, estimating the primary magma composi-

tions for thermobarometric analysis requires back-correction

for fractionation, and thus knowledge of the source composi-

tion is needed so that one knows when to terminate the

fractionation corrections. Because the >3-Ma basalts derive

from a pyroxenite-bearing source, estimating the exact source

composition is difficult, so the SiO2 barometer cannot be

reliably applied. However, the <1-Ma basalts satisfy the con-

ditions for melting of typical peridotitic mantle. Thermobaro-

metric analyses applied to these basalts show that melting

initiates at depths of �75 km, corresponding to a mantle

potential temperature of �1350 �C, and equilibrate to depths

of 50 km, overlapping the depth range from which the Creta-

ceous garnet-pyroxenites resided (Figure 14). These observa-

tions are consistent with recent removal of most of the

pyroxenite root beneath the Sierras.
4.12.8 Summary and Outlook

In this review, the physics of lower crustal recycling has been

summarized and the geologic phenomena predicted in the

aftermath of foundering discussed, namely topographic uplift,

increased surface heat flux, and small-volume/low-melting-

degree basaltic magmatism, followed by a decrease in both

topography and heat flux. Care must be taken not to confuse

these phenomena with those predicted from active litho-

spheric extension. Several case studies where lithospheric foun-

dering has been proposed are reviewed, but only in a few places

is there direct evidence for lower crustal removal. In most cases,

removal of mafic lower crust is hypothesized from mass-

balance constraints centered about the felsic nature of the

continental crust. Exactly when mafic lower crust is generated

and subsequently removed is an open question. One possibil-

ity is that mafic lower crust forms from preexisting continental

crust by deep crustal anatexis during continent–continent

collisions and foundering follows immediately thereafter. An-

other possibility is that the mafic lower crust is an integral

product of magmatic differentiation in arc settings, and is

thus formed when juvenile crust itself is formed. In this

scenario, foundering occurs during or shortly after the lifespan

of the arc. The overall felsic nature of continents today, as

constrained by seismic studies, suggests that most of the

formation and foundering of mafic lower crust occurs well

before continent–continent collisions have a chance to
operate. Furthermore, mass-balance constraints based on spe-

cific arc sections and extrapolated to arcs globally show that the

global mafic crustal recycling in arcs is greater than that in-

ferred for collisional orogens. The estimated lower crust recy-

cling rate of arcs is �0.2 times that of the oceanic crust

production rate, and, therefore, cannot be ignored when dis-

cussing the differentiation of the silicate Earth.

Acknowledgments

I thank Peter Luffi and Emily Chin for the discussions and

Luffi, in particular, for proofreading. I also thank Stephan

Sobolev, Mark Behn, and Roberta Rudnick for their detailed

reviews and Gene Humphreys, Peter Molnar, Robert Kay, Sue

Kay, Don Anderson, John Platt, and Alan Levander for their

discussions on various aspects of this paper at different points

in time, but all errors and biases are entirely, and unfortu-

nately, mine. This work was supported by the NSF and the

Packard Foundation.
References
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