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ABSTRACT

The Basin and Range Province is a clas-
sic locality of continental extension, and it is
ideal for analyzing factors that control the
collapse of thickened orogenic crust. How-
ever, the magnitude and distribution of exten-
sion, which are critical parameters for this
analysis, remain poorly constrained in many
areas. To address this problem, a cross section
spanning the province at ~39°N is presented.
Retrodeformation yields 230 + 42 km of cumu-
lative extension (46% + 8%), and an average
pre-extensional thickness of 54 + 6 km. When
viewed at the scale of multiple ranges, two
high-magnitude (~60%-66%) and two low-
magnitude (~11%) domains of extension are
apparent, and each can be related spatially to
portions of the Cordilleran orogen that have
high and low predicted crustal thickness, re-
spectively. The eastern high-magnitude do-
main restores to a 60 + 11 km thickness and
corresponds to the western portion of the
Sevier thrust belt and the estimated spatial
extent of thick, underthrusted North Ameri-
can crust. The western high-magnitude do-
main restores to a 66 = 5 km thickness and
corresponds to the eastern part of the Sierran
magmatic arc. Thickness variations inherited
from Cordilleran orogenesis are interpreted
as the primary control on extensional strain
distribution. The eastern domain underwent
a protracted, Late Cretaceous—Miocene tran-
sition to an extensional regime, while wide-
spread extension in the western domain did
not start until the Miocene, which is attrib-
uted to upper-crustal rheological differences
between the granitic arc and the sedimentary
section in the retroarc. Most extension can
be temporally related to geodynamic driving
events, including delamination, slab rollback,
and plate-boundary reorganization, which
caused gravitational collapse to proceed in
distinct episodes.
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INTRODUCTION

The Basin and Range Province (Fig. 1A) is
our finest modern example of large-scale con-
tinental extension. Decades of research have
greatly expanded our knowledge of the struc-
tural mechanisms that accomplished Basin and
Range extension (e.g., Anderson, 1971; Stewart,
1971; Armstrong, 1972; Wright and Troxel,
1973; Proffett, 1977; Wernicke, 1981; Zoback
et al., 1981; Allmendinger et al., 1983; Gans
and Miller, 1983; Miller et al., 1983; Coney and
Harms, 1984; Gans, 1987; Faulds and Stewart,
1998; Dickinson, 2002; Colgan et al., 2006; Col-
gan and Henry, 2009; Long and Walker, 2015).
Despite this progress, the structural complexity
of the province has left several critical problems
unresolved, including questions as fundamental
as how much extensional strain has been accom-
modated in many areas of the province, and how
strain has been distributed in space and time.
The importance of this problem is augmented
because Basin and Range extension is inter-
preted to have accommodated the collapse of an
orogenic plateau constructed during Jurassic—
Paleogene Cordilleran contractional deforma-
tion (e.g., Coney and Harms, 1984; Molnar and
Lyon-Caen, 1988; Allmendinger, 1992; Dilek
and Moores, 1999; DeCelles, 2004). Therefore,
analysis of the magnitude and distribution of ex-
tension has the potential to inform us about the
geodynamic mechanisms that contribute to the
collapse of thickened crust. A detailed investiga-
tion of the geometric and kinematic framework
of the Basin and Range Province is a critical
prerequisite to begin addressing this problem.

Several researchers have estimated exten-
sional strain using cross section reconstructions,
most often from single ranges (e.g., Gans and
Miller, 1983; Proffett and Dilles, 1984; Smith,
1992; Surpless et al., 2002; Colgan et al., 2008;
Long et al., 2014a; Long and Walker, 2015), but
sometimes spanning larger portions of the prov-
ince (Bartley and Wernicke, 1984; Gans, 1987;
Wernicke et al., 1988; Smith et al., 1991; Colgan
etal., 2006; Colgan and Henry, 2009). Province-

wide strain estimates have been obtained using
map-view reconstructions that are supported by
extension magnitudes compiled from individual
ranges (Stewart, 1980; Coney and Harms, 1984;
McQuarrie and Wernicke, 2005), and using
paleomagnetic rotation magnitudes in the Sierra
Nevada (Frei et al., 1984; Bogen and Schweick-
ert, 1985). However, to date, a cross section that
spans the full width of the province has not been
presented.

The goal of this study is to illustrate the
geometry and quantify the magnitude of exten-
sion across the Basin and Range by presenting a
province-wide cross section centered at ~39°N.
Retrodeformation of the cross section allows
assessment of the spatial patterns of strain ac-
cumulation and provides a detailed view of the
pre-extensional geometry. The reconstruction
is integrated with newly published EarthScope
crustal thickness data (Gilbert, 2012) in order
to place constraints on pre-extensional crustal
thickness, and how thicknesses may have varied
from east to west. Implications for factors that
may have controlled the distribution of exten-
sional strain are then explored. Finally, a review
of published extension timing constraints in
proximity to the section line is presented, which
allows placing extension in the temporal context
of geodynamic driving mechanisms.

TECTONIC FRAMEWORK

From the Neoproterozoic to the Devonian,
Nevada and western Utah were situated on the
western Laurentian continental shelf, where a
thick section of marine sedimentary rocks was
deposited (e.g., Stewart and Poole, 1974; Poole
et al.,, 1992). Following this, two obduction
events, the Mississippian Antler orogeny and
Permian-Triassic Sonoma orogeny, emplaced
slope and basinal rocks eastward over the shelf
edge in central and western Nevada (Fig. 1B;
e.g., Speed and Sleep, 1982; Dickinson, 2000).
In eastern Nevada and western Utah, shallow-
marine deposition on the continental shelf con-
tinued until the Triassic (e.g., Stewart, 1980).
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Figure 1. (A) Map of Utah, Ne-
vada, and eastern California
(base polygons from McQuar-
rie and Wernicke, 2005), show-
ing Cenozoic tectonic provinces.
Basin and Range boundaries are
from Dickinson (2002) and Col-
gan et al. (2010). Walker Lane
boundaries are from Faulds
and Henry (2008). Location of
Consortium for Continental
Reflection Profiling (COCORP)

39°

During the Jurassic, closure of a back-arc ba-
sin in western Nevada constructed the E-vergent
Luning-Fencemaker thrust belt (Fig. 1B; e.g.,
Oldow, 1984; Wyld, 2002). This established an
Andean-style subduction system on the west-
ern North American margin, which initiated
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construction of the Cordilleran orogenic belt
(e.g., DeCelles, 2004; Dickinson, 2004). Cor-
dilleran provinces include the Jurassic—Creta-
ceous Sierra Nevada magmatic arc in California
(e.g., Ducea, 2001), a broad hinterland region
across Nevada, and the E-vergent Sevier thrust
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transect is from Allmendinger
et al. (1983). Inset shows Earth-
Scope crustal thickness data
(modified from Gilbert, 2012).
Abbreviations: RAG—Raft
River—-Albion-Grouse Creek
core complex; REH—Ruby-
East Humboldt core com-
plex; SR—Snake Range core
complex. State abbreviations:
WY—Wyoming, UT—Utah,
NV—Nevada, AZ—Arizona,
CA—California. (B) Map of
same region as A, showing
Mesozoic-Paleogene Cordi-
lleran tectonic provinces (modi-
fied from Long, 2015). Inset
shows approximate pre-exten-
sional crustal thickness (modi-
fied from Coney and Harms,
1984; Best et al., 2009). Ab-
breviations: CNTB—Central
Nevada thrust belt; ENFB—
Eastern Nevada fold belt;
ESTB—Eastern Sierra thrust
belt; GT—Golconda thrust;
LFTB—Luning-Fencemaker
thrust belt; RMT—Roberts
Mountains thrust; WUTB—
Western Utah thrust belt.

belt in western Utah (Fig. 1B), where a total
of ~200 km of shortening was accommodated
between the latest Jurassic and Paleogene (e.g.,
Burchfiel and Davis, 1975; DeCelles, 2004;
Yonkee and Weil, 2015). In the hinterland, a
few tens of kilometers of E-vergent shortening
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were accommodated within narrow thrust belts
in central Nevada and western Utah and a broad
region of folds in eastern Nevada (e.g., Gans and
Miller, 1983; Taylor et al., 2000; Long, 2012,
2015; Greene, 2014).

Crustal shortening estimates, reconstruc-
tions of Cenozoic extension, and isotope paleo-
altimetry suggest that 50—60-km-thick crust and
2.5-3.5 km elevations were attained in eastern
Nevada during the Late Cretaceous and Paleo-
gene (Coney and Harms, 1984; DeCelles and
Coogan, 2006; Cassel et al., 2014; Snell et al.,
2014), giving rise to the name “Nevadaplano,”
after comparison to the Andean Altiplano (e.g.,
Dilek and Moores, 1999; DeCelles, 2004).
Evidence for localized, Late Cretaceous—Paleo-
cene, synorogenic extension in the Nevadaplano
has been documented, including normal faulting
(Camilleri and Chamberlain, 1997; Druschke
et al., 2009a; Long et al., 2015) and initial exhu-
mation of midcrustal rocks now exposed in core
complexes (Hodges and Walker, 1992; McGrew
et al., 2000; Wells and Hoisch, 2008).

During the Paleocene and Eocene, east-
ward migration of shortening and magmatism
into Utah and Colorado during the Laramide
orogeny is interpreted to represent a shallow-
ing of subduction angle (e.g., Dickinson and
Snyder, 1978). This was followed by the Great
Basin ignimbrite flare-up, a NE to SW mag-
matic sweep across Nevada and Utah between
the late Eocene and early Miocene (e.g., Best
et al.,, 2009; Henry and John, 2013), which is
interpreted as a consequence of slab rollback
(e.g., Humphreys, 1995). Volcanic rocks of the
ignimbrite flare-up overlie Paleozoic—Mesozoic
rocks across a regionally distributed Paleogene
unconformity, which represents a postorogenic
erosion surface that predates extension in most
places (e.g., Armstrong, 1972; Gans and Miller,
1983; Long, 2012, 2015). In eastern Nevada and
western Utah, some areas experienced Eocene—
Oligocene extension (e.g., Gans et al., 1989,
2001; Potter et al., 1995; Constenius, 1996;
Evans et al., 2015; Long and Walker, 2015; Lee
et al.,, 2017). However, extension was local-
ized, and paleoaltimetry data indicate that sur-
face elevations were still high during this time
(Wolfe et al., 1997; Horton et al., 2004; Cassel
et al., 2014).

The inception of widespread extension that
constructed the Basin and Range Province, and
associated lowering of surface elevation (e.g.,
Colgan and Henry, 2009; Cassel et al., 2014),
is attributed to reorganization of the Pacific—
North American plate boundary in the middle
Miocene, and more specifically to establish-
ment of the San Andreas transform system (e.g.,
Atwater, 1970; Dickinson, 1997, 2002, 2006).
The decrease in interplate coupling that accom-

panied the demise of Farallon plate subduction,
and the corresponding increasing influence of
dextral shear at the plate margin, remains the
most widely accepted explanation for the pri-
mary driver of Basin and Range extension (e.g.,
Dickinson, 2002). Though the duration of exten-
sion spans from the Miocene to the present in
most places, the timing, rates, and magnitudes
of Basin and Range extension exhibit significant
spatial variability (e.g., Gans and Miller, 1983;
Dilles and Gans, 1995; Miller et al., 1999b; Col-
gan et al., 2006; Colgan and Henry, 2009).

METHODS

Individual cross sections of 18 ranges, span-
ning from the House Range in western Utah to
the Carson Range in eastern California, were
constructed using data from 36 published geo-
logic maps, which were typically at scales be-
tween 1:24,000 and 1:62,500 (Table 1). These
were integrated with a published cross sec-
tion of the Sevier thrust belt in western Utah
(DeCelles and Coogan, 2006), which extends
from the House Range to the Wasatch Plateau.
Deformed and restored versions of the province-
wide cross section are presented on Plate DR1 at
1:200,000 scale.

The lines of section through each range
(Fig. 2) were selected to optimize the following
criteria: (1) multiple across-strike exposures of
the Paleogene subvolcanic unconformity, which
is the datum used to restore extension; (2) exten-
sive exposures of bedrock deformed by major
normal fault systems, in order to yield the most
information on extension; and (3) exposures of
Paleozoic—Mesozoic thrust faults and fold axes,
in order to constrain the pre-extensional defor-
mation geometry. All three criteria were com-
monly met together only at one specific latitude
in each range, which is the reason that the line
of section is not a single continuous E-W trace.

Stratigraphic thicknesses were determined
from geometric constraints along the line of sec-
tion (i.e., dip angle and locations of contacts).
When complete thicknesses could not be deter-
mined, thicknesses reported in source mapping
or from the isopach maps of Stewart (1980)
were utilized. Unit divisions were at the period
level where possible, though grouping of units
was necessary in some areas depending on the
level of detail of source mapping. The sections
were drafted down to the level of the lowest
stratigraphic unit exposed in each range.

Apparent dips of attitude measurements
from source maps (1412 measurements total;

!GSA Data Repository item 2018239, Plate DR1,
Figure DR1, and Table DRI, is available at http://
www.geosociety.org/datarepository/2018 or by re-
quest to editing @geosociety.org.

Table 1) were projected onto the cross section,
and areas of similar apparent dip were divided
into domains separated by kink surfaces (e.g.,
Suppe, 1983). Faults are shown as planar, and
dip angles for some faults were calculated us-
ing three-point problems (Table DR1 [see foot-
note 1 for Table DR1 throughout]). In addition,
many faults have published constraints on their
geometries (e.g., Proffett and Dilles, 1984;
Surpless et al., 2002; Long et al., 2014a), and
many are constrained to a range of dip angles
by their interactions with topography. However,
the majority of faults on source maps either did
not pass through sufficient topography, or their
locations were not determined precisely enough
to support three-point problems. Therefore, the
majority of faults were assumed to have a 60°
dip (e.g., Anderson, 1951), and their apparent
dips were projected onto the cross section.
Geologic contacts offset across faults were
drafted so that they were internally consistent
and thus retrodeformable. Therefore, the cross
sections represent viable (though nonunique)
solutions (Elliott, 1983). For many normal
faults, footwall cutoffs necessary for matching
with subsurface hanging-wall cutoffs have been
eroded. In these cases, geometries that mini-
mized fault offset were used. Justifications for
drafting decisions are annotated on Plate DR1
(see text footnote 1 for Plate DR1 throughout).
The cross sections of individual ranges were
retrodeformed by restoring offset on all normal
faults and untilting the Paleogene unconformity
to horizontal. The Paleogene unconformity was
restored to an elevation of 3 km (e.g., DeCelles
and Coogan, 2006; Cassel et al., 2014). Exten-
sion was estimated for each range by compar-
ing present-day and pre-extensional lengths
(Table 2). Assumption of 60° dip angles for
many faults is likely the largest source of uncer-
tainty in the restoration process. For example,
for the idealized case of homogeneous, domino-
style extension, using 50° and 70° fault dip an-
gles would yield extension magnitudes that are
+4%, +9%, and +19% different than using 60°
fault dip angles for 10°, 20°, and 30° of tilting,
respectively (Wernicke and Burchfiel, 1982).
However, because most of the examined ranges
have experienced polyphase extension and ex-
hibit differing fault dip directions, tilt directions,
and tilt magnitudes, quantitative estimation of
uncertainties for each range was not attempted.
In this study, no attempt was made to illus-
trate the deformation geometry of modern ba-
sins, because subsurface data that would allow
quantification of extension magnitude are not
available along the section line. Publicly avail-
able seismic reflection profiles of individual ba-
sins are limited in number, and they are mostly
from northern Nevada (e.g., Anderson et al.,
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TABLE 1. GEOLOGIC MAP SOURCES USED TO SUPPORT SEGMENTS OF THE CROSS SECTION

Longitude of  Longitude of

Mapping Latitude of section line western extent eastern extent Number of

Mountain range Mapping source scale (°N) (°W) (°W) measurements
Canyon Range to Wasatch Plateau DeCelles and Coogan (2006) 1:860,000 39°2125” 112°17’5” 111°23'5” -
Sevier Desert Basin DeCelles and Coogan (2006) 1:860,000 39°21"25” 113°31'15” 112°17'5” -
House Range Hintze (1974b) 1:48,000 39°12'35” 113°30" 113°15’ 26
Confusion Range (E) Hintze (1974a) 1:48,000 39°12'00” 113°45" 113°30’ 30
Confusion Range (W) Hose (1965) 1:24,000 39°12°00” 113°54’ 113°45’ 55
Northern Snake Range (E) Miller and Gans (1999) 1:24,000 39°12'30” 114°07'30” 114°00 47
Northern Snake Range (E-central) Miller et al. (1999a) 1:24,000 39°12'30” 114°15" 114°07'30” 98
Northern Snake Range (W-central) Johnston (2000) 1:24,000 39°12'30” 114°22'30” 114°15’ 110
Northern Snake Range (W edge) Hose and Blake (1976) 1:250,000 39°12'30” 114°24’45” 114°2230” 0
Schell Creek Range Drewes (1967) 1:48,000 39°0530” 114°45" 114°30’ 64
Egan Range (E) Brokaw (1967) 1:24,000 39°12’45”, 39°12'15” 115°00" 114°52'30” 74
Egan Range (central) Brokaw and Heidrick (1966) 1:24,000 39°10'50”, 39°12’45” 115°0730” 115°00° 58
Egan Range (W) Hose and Blake (1976) 1:250,000 39°10'50” 115°10" 115°07’30” 0
White Pine Range (E) Hose and Blake (1976) 1:250,000 39°21'30” 115°22'30” 115°19’ 0
White Pine Range (W and central) Humphrey (1960) 1:48,000 39°21'30” 115°33’ 115°22'30” 47
White Pine Range (W edge) Tripp (1957) 1:40,000 39°22'45” 115°36" 115°33’ 7
Pancake Range (E edge) Tripp (1957) 1:40,000 39°24'35” 115°40" 115°39’ 0
Pancake Range (W and central) This study (Figure DR1) 1:12,000 39°24'35” 115°42’ 115°40’ 62
Diamond Mts./Fish Creek Range Long et al. (2014a) 1:24,000 39°26'20” 116°6 115°48'30” 192
Mahogany Hills Schalla (1978) 1:24,000 39°26'15” 116°11'30” 116°6 26
Monitor Range (E) Bortz (1959) 1:24,000 39°13'10”, 39°14’30” 116°27°40” 116°22 26
Monitor Range (central) Roberts et al. (1967) 1:250,000 39°14’30” 116°29'10” 116°27°40” 0
Monitor Range (W) Lohr (1965) 1:24,000 39°19'55” 116°35'15” 116°29'10” 18
Toquima Range McKee (1976) 1:62,500 39°03'05”, 39°00'55” 117°00" 116°40° 47
Toiyabe Range Cohen (1980) 1:20,000 38°58'15” 117°15” 117°12 3
Toiyabe Range Ferguson and Cathcart (1954)  1:125,000 38°58'15” 117°30" 117°07'30” 18
Shoshone Mountains Whitebread et al. (1988) 1:62,500 38°51'30”, 38°48'55” 117°42'10” 117°30° 16
Paradise Range John (1988) 1:24,000 38°53'10”, 38°48’30”, 38°46'45" 118°00" 117°4210” 69
Paradise Range Silberling and John (1989) 1:24,000  38°53'10”, 38°48'30”, 38°46'45” 118°00" 117°45' 37
Paradise Range (W) Ekren and Byers (1986a) 1:48,000 38°46'45” 118°09" 118°00’ 13
Gabbs Valley Range (E) Ekren and Byers (1986a) 1:48,000 38°4540” 118°15" 118°09’ 6
Gabbs Valley Range (W) Ekren and Byers (1986b) 1:48,000 38°45'40”, 38°49'25” 118°30" 118°15’ 32
Gillis Range Hardyman (1980) 1:48,000 38°49'25” 118°45' 118°30’ 16
Wassuk Range/Gray Hills (E) Bingler (1978) 1:48,000 38°49'45”, 38°48'35” 119°00" 118°45 11
Wassuk Range/Gray Hills (E) Stockli et al. (2002) 1:162,000 38°49'45”, 38°48'35” 119°02'25” 118°45’ 17
Gray Hills (W)/Cambridge Hills Stewart and Dohrenwend (1984)  1:62,500 38°48'35” 119°08°40” 119°00’ 1
Singatse Range Proffett and Dilles (1984) 1:24,000 38°59'20” 119°20'25” 119°0840” 47
Buckskin Range Stewart (1999) 1:100,000 39°00'35” 119°24’30” 119°20'25” 32
Pine Nut Mountains Stewart (1999) 1:100,000 39°0145”, 39°03'20” 119°45’ 119°24’30” 43
Pine Nut Mountains Cashman et al. (2009) 1:250,000 39°0320” 119°41'30” 119°30"30” 7
Carson Range Armin et al. (1983) 1:62,500 38°48'55”, 38°45'10” 120°00" 119°45’ 35
Sierra Nevada Loomis (1983) 1:62,500 38°45'10” 120°15" 120°00’ 22

Total measurements: 1412

Note: See text footnote 1 for Figure DR1.

1983). Gravity modeling has been used to es-
timate the depth to the base of valley fill and in
some cases the offset magnitudes of intrabasinal
faults (e.g., Cashman et al., 2009). However,
gravity modeling does not constrain the defor-
mation geometry of bedrock below the base of
valley fill, or the offset magnitudes of normal
faults that predate basin construction. Wells
can constrain the depth of valley fill and bed-
rock contacts, but multiple across-strike wells
in a single basin are required to constrain the
geometry of subsurface normal faults. Publicly
available well records from Nevada and Utah
(Hess et al., 2004; Utah Department of Natural
Resources, 2017) lack the spatial density to al-
low quantification of basin extension magnitude
along the section line.

Here, I took a simple approach and assumed
that the best available estimate of cumulative
extension across a basin can be approximated
by the extension magnitudes of the bounding
ranges. For example, if one range records 50%
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extension, and the opposite range records 30%,
then the intervening basin is interpreted to have
accommodated 40% + 10% extension. The ba-
sin was then retrodeformed accordingly, and an
uncertainty magnitude was calculated (Table 2).
This assumption is supported by evidence
throughout much of the Great Basin showing
that the modern system of basins and ranges
formed during a relatively late phase of the pro-
tracted Cenozoic extension history (e.g., Zoback
et al., 1981; Anderson et al., 1983; Gans et al.,
2001; Colgan and Henry, 2009). I acknowledge
that estimates obtained using this technique are
approximate, and that the underlying assump-
tion is more applicable to regions with higher
extension magnitudes. This technique is likely
to underestimate extension in basins that are sit-
uated between ranges that exhibit low extension
magnitudes but that may be bound by relatively
large-offset range-bounding faults. However, in
the absence of the subsurface data necessary to
provide more quantitative estimates, the tech-
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nique implemented here is interpreted to pro-
vide a realistic first-order approximation.

Other assumptions and caveats include the fol-
lowing: (1) It is assumed that rock units are cor-
rectly identified, and that interpretations of strati-
graphic versus structural contacts on all source
maps are correct. (2) Though the extension di-
rection was not oriented exactly E-W in many
ranges (e.g., Lee et al., 1987; Faulds and Henry,
2008), and likely underwent temporal changes in
several regions (e.g., Zoback et al., 1981, 1994;
McQuarrie and Wernicke, 2005; Colgan, 2013),
all section lines are oriented E-W, in order to
estimate cumulative extension in a present-day
longitudinal reference frame. (3) Drafting deci-
sions were made to minimize extension, faults
with offset magnitudes <100 m were typically
not included, and extension estimates for ba-
sins that lie between low-extension (~10% or
less) ranges are likely minima; therefore, the
cumulative extension across the cross section
should be regarded as a conservative estimate.

Geological Society of America Bulletin, v. 131, no. 1/2
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used in the text. OQil wells projected onto the cross section are shown with black dots (see guide to well numbering on Plate DR1). Location of

Consortium for Continental Reflection Profiling (COCORP) transect (dark-gray lines) is from Allmendinger et al. (1983, 1987). Abbrevia-

Figure 2. (A) Western and (B) eastern reference maps showing locations of lines of section (thick black lines) and guide to geographic names
tions: Mts—Mountains; R—Range; Vly—Valley. State abbreviations: UT—Utah, NV—Nevada, CA—California.
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TABLE 2. SUPPORTING DATA FOR ESTIMATION OF EXTENSION

Present-day Pre-extensional Extension Percent Percent
length length Extension uncertainty extension extension

Mountain range or basin (km) (km) (km) (km) uncertainty
Wasatch Plateau to Canyon Range 71.2 64.3 6.9 11
Sevier Desert Basin 84.5 50.6 33.9 67
House Range 16.2 14.3 1.9 13
Tule Valley 11.5 10.5 1.0 0.3 10 3
Confusion Range 26.2 24.4 1.8 7
Snake Valley 14.6 8.9 5.7 4.7 129 122
Snake Range (strain estimate from footwall of NSRD) 30.6 8.7 21.9 250
Spring Valley 71 3.0 4.1 1.0 164 86
Schell Creek Range 21.3 12.0 9.3 78
Steptoe Valley 14.0 8.1 5.9 0.2 73 5
Egan Range 21.7 12.9 8.8 68
Jake’s Valley 14.0 10.4 3.6 241 41 28
White Pine Range 24.5 21.7 2.8 13
Newark Valley (east) 4.4 4.0 0.4 0.1 10 3
Pancake Range 6.4 6.0 0.4 7
Newark Valley (west) 71 5.7 1.4 1.0 29 22
Diamond Mts./Fish Creek R./Mahogany Hills 32.9 22.0 10.9 50
Antelope Valley 15.6 12.3 3.3 1.9 30 20
Monitor Range 17.6 16.0 1.6 10
Monitor Valley 10.4 9.6 0.8 0.2 8 2
Toquima Range 24.3 23.0 1.3 6
Big Smoky Valley 22.5 20.7 1.8 0.6 9 3
Toiyabe Range 12.9 11.6 1.3 12
Reese River Valley 9.9 9.1 0.8 0.3 9 3
Shoshone Mountains 9.5 9.0 0.5 6
lone Valley 10.2 6.8 3.4 2.8 80 74
Paradise Range 31.1 12.3 18.8 153
Gabbs Valley 9.0 5.8 3.2 2.2 83 70
Gabbs Valley Range/Gillis Range 41.9 37.0 4.9 13
Walker River Valley 7.5 4.7 2.8 2.0 98 85
Wassuk Range/Gray Hills/Cambridge Hills 27.9 9.9 18.0 182
Mason Valley 7.3 2.6 4.7 0.1 181 2
Singatse Range/Buckskin Range 19.6 7.0 12,5 179
Churchill Canyon 3.6 2.1 1.5 0.8 100 80
Pine Nut Mountains 24.9 20.8 4.1 20
Carson Valley 3.0 2.6 0.4 0.1 16 5
Carson Range 17.0 15.3 1.7 11
Total (no additional NSRD extension added) 733.9 525.7 208.1 20.4 40 4
Additional extension on NSRD (assuming 20°-40° dip range) 30 14
Total (all additional 30 + 14 km NSRD extension added) 733.9 495.7 238.2 34.4 48 7
Total (additional NSRD extension added as 22 + 22 km range) 733.9 503.8 230.1 42.4 46 8

Note: NSRD—Northern Snake Range décollement.

In addition, because uncertainties were not esti-
mated for restoration of ranges, all uncertainty
estimates listed herein should also be interpreted
as minima.

RANGE-BY-RANGE GEOMETRY
AND EXTENSION MAGNITUDE
(EAST TO WEST)

In this section, first-order normal faults are de-
fined as having 21 km of offset, and second-order
normal faults are defined as having <1 km of off-
set. Also, “steeply dipping” is defined as >50°,
“moderately dipping” indicates dips between 20°
and 50°, and “gently dipping” is defined as <20°.
Extension magnitudes recorded in each range, as
well as estimated extension magnitudes and un-
certainties from basins, are listed in Table 2.

Wasatch Plateau to Sevier Desert Basin
The deformed and restored cross sections of

DeCelles and Coogan (2006, their figs. 3 and 8F,
respectively) were utilized for the 160-km-wide
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region from the Wasatch Plateau to the Sevier
Desert Basin. Their study was focused on the
kinematic development of the Sevier thrust belt;
here, I focus primarily on implications for the
geometry and magnitude of extension.

Between the latest Jurassic and Paleocene,
the Sevier thrust belt accommodated ~220 km
of shortening, which was distributed among four
E-vergent thrust systems (Allmendinger et al.,
1983; Villien and Kligfield, 1986; DeCelles
et al., 1995; DeCelles and Coogan, 2006). The
Canyon Range thrust, the structurally highest
fault, carries an ~15-km-thick section of Neo-
proterozoic—Triassic rocks. To the east, the
Pavant, Paxton, and Gunnison thrusts and as-
sociated duplex systems deform an ~3-km-thick
section of Cambrian-Middle Jurassic sedimen-
tary rocks, and a Late Jurassic—Cretaceous syn-
orogenic section that is as thick as 6 km. At the
deformation front, a W-vergent triangle zone
deforms synorogenic rocks.

In the frontal portion of the thrust belt, be-
tween the Wasatch Plateau and Canyon Range,
the cross section was restored so that the un-

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/131/1-2/99/4604506/99.pdf
bv niversity of Nevada Reno user

conformity at the base of Paleogene sedimen-
tary rocks is approximately horizontal. In the
Wasatch Plateau, the unconformity dips 10°W,
and three second-order normal faults sole into
thrust faults of the frontal triangle zone. In
Sanpete Valley, an ~20°W-dipping half graben
formed from ~3 km of normal-sense motion on
the Sanpete Valley back thrust. This basin con-
tains tuffaceous rocks as old as ca. 39-27 Ma,
and it represents one of a series of Eocene—
Oligocene half grabens in this region that de-
veloped from extensional reactivation of thrust
faults (Constenius, 1996). In the San Pitch
Mountains, the Paleogene unconformity dips
between 5°E and 5°W, and a second-order nor-
mal fault soles into the roof thrust of the Paxton
duplex. In Juab Valley, a half graben contain-
ing 10°W- to 30°W-dipping Paleogene—Neo-
gene rocks formed from 3 km of down-to-the-E
offset on a normal fault that soles into the roof
thrust of the Pavant duplex. Further west in
Juab Valley, the Pavant thrust was reactivated
with 1.5 km of normal offset. In the Canyon
Range, the Paleogene unconformity is not ex-
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posed, and no normal faults intersect the sec-
tion line. Comparison of final and initial widths
from the Canyon Range to the Wasatch Plateau
yielded 6.9 km (11%) of cumulative extension.

In the Sevier Desert Basin, the western por-
tion of the thrust belt is buried under 1-5 km
of Oligocene—Quaternary sediment. A 10°- to
20°W-dipping seismic reflector that can be
traced under the basin for ~70 km has been
interpreted as a low-angle extensional fault,
the Sevier Desert detachment (e.g., Wernicke,
1981; Allmendinger et al., 1983, 1986, 1987;
Allmendinger and Royse, 1995; Coogan and
DeCelles, 1996; Stockli et al., 2001; DeCelles
and Coogan, 2006). Alternatively, this reflec-
tor has been interpreted as an unconformity
between Cenozoic and Paleozoic rocks (e.g.,
Anders and Christie-Blick, 1994; Anders et al.,
1995, 2001). Here, 1 follow the detachment
interpretation, after discussions in DeCelles
and Coogan (2006) and Coogan and DeCelles
(2007) that summarize structural, geophysical,
well log, and sedimentologic data sets that re-
quire large-magnitude extension in this region
of Utah. The Sevier Desert detachment is shown
reactivating the Pavant and Paxton-Gunnison
thrusts at depth, and a series of high-angle nor-
mal faults in the Sevier Desert Basin feed dis-
placement into the detachment. Matching hang-
ing-wall and footwall cutoffs indicate ~47 km
of total displacement on the detachment. Com-
parison of the final and initial widths of the
Sevier Desert Basin yielded 33.9 km (67%) of
extension.

House Range

The House Range exposes subhorizontal
Cambrian rocks and is deformed by a first-
order, W-dipping normal fault system on its
western flank and two second-order, E-dip-
ping normal faults (Hintze, 1974b). Several
across-strike exposures of the Paleogene un-
conformity, which underlies late Eocene tuff
(ca. 35.4 Ma; Hintze and Davis, 2002), define
minimal (<3°) eastward tilting. Restoration of
normal faults and tilting yielded 1.9 km of ex-
tension (13%).

The House Range occupies the crest of the
Sevier culmination, a structural high defined
by subvolcanic erosion levels (Harris, 1959;
Hintze and Davis, 2003; Long, 2012) and
arched reflectors on the Consortium for Con-
tinental Reflection Profiling (COCORP) profile
(Allmendinger et al., 1983). The culmination
is interpreted to have formed from duplexing
of Precambrian crystalline basement, which
folded the overlying Canyon Range thrust
sheet (Allmendinger et al., 1987; DeCelles and
Coogan, 2006).
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Confusion Range

In the Confusion Range, Devonian—Permian
rocks are deformed by the E-vergent Western
Utah thrust belt, which accommodated ~10 km
of shortening (Greene, 2014). In the western
part of the range, several folds formed above the
Brown’s Wash thrust, including the Buckskin
Hills detachment fold, which exhibits an over-
turned western limb (Greene, 2014). The eastern
flank of the range is a gently W-dipping homo-
cline in the hanging wall of the Payson Canyon
thrust system, which ramps through Silurian—
Devonian rocks (Hintze, 1974a; Greene, 2014).
The ~8-km-wide region between the Knoll anti-
cline and Conger Springs anticline is referred
to as the Confusion synclinorium (Hose, 1977;
Gans and Miller, 1983), a structural low that
can be traced for a N-S distance of ~130 km
(Long, 2012).

The Confusion Range is deformed by a
series of second-order, E- and W-dipping,
high-angle normal faults (Hose, 1965; Hintze,
1974a). Multiple across-strike exposures of the
unconformity below late Eocene—Oligocene
(ca. 35.4-30.5 Ma) volcanic and sedimentary
rocks (Hintze and Davis, 2002) define <5° of
eastward tilting. Restoration yielded 1.8 km of
extension (7%).

Northern Snake Range

The Snake Range core complex has been
extensively studied over the past 40 yr (e.g.,
Coney, 1974; Gans and Miller, 1983; Miller
etal., 1983, 1999b; Bartley and Wernicke, 1984;
Gans et al., 1985; Lee et al., 1987, 2017; Lee,
1995; Lewis et al., 1999; Cooper et al., 2010;
Evans et al., 2015). However, many aspects of
its development remain debated, in particular
the tectonic significance of the E-vergent North-
ern Snake Range décollement, the primary ex-
tensional structure in the range. The principal
disagreement is over the pre-extensional depth
of Neoproterozoic—Cambrian metasedimentary
rocks in the footwall of the décollement, and the
corresponding implications for extension mag-
nitude. Early, field-based studies proposed that
the Northern Snake Range décollement origi-
nated as a subhorizontal zone of decoupling
between brittlely deformed Cambrian—Permian
sedimentary rocks in the hanging wall and duc-
tilely attenuated Neoproterozoic—Cambrian
metasedimentary rocks in the footwall that re-
store to pre-extensional stratigraphic depths
of ~7-13 km (Gans and Miller, 1983; Miller
et al., 1983; Gans et al., 1985; Lee et al., 1987).
In contrast, other studies have made structural
arguments (Bartley and Wernicke, 1984) and
presented thermobarometry data (Lewis et al.,
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1999; Cooper et al., 2010) indicating that foot-
wall rocks were buried as deep as ~23-30 km
prior to extension and were exhumed by a much
higher-offset (perhaps up to 60 km; Bartley
and Wernicke, 1984) Northern Snake Range
décollement.

Despite the results of the thermobarometry,
this disagreement remains unresolved, as field
relationships provide strong arguments that
rocks above and below the Northern Snake
Range décollement shared a common deposi-
tional, metamorphic, and intrusive history, and
thus were stratigraphically contiguous prior to
extension. These relationships (summarized in
Miller et al., 1999b) include: (1) similar meta-
morphic grades observed above and below the
Northern Snake Range décollement in several
places; (2) correlation of distinct facies changes
in Neoproterozoic—Cambrian rocks between the
Northern Snake Range and surrounding ranges;
(3) peak metamorphic conditions that increase
gradually between the southern and northern
Snake Range, with no sharp breaks observed;
and (4) similarity in isotopic composition and
age of Jurassic plutons between the Northern
Snake Range and surrounding ranges. Resolu-
tion of this debate is beyond the scope of this
paper. Instead, here I used geometric constraints
from the cross section, published strain es-
timates, and published pressure-temperature
(P-T) data to estimate a permissible offset
magnitude range for the Northern Snake Range
décollement, which is presented as an average
and uncertainty that was factored into the cumu-
lative extension estimate.

In the eastern two thirds of the range, two
sets of normal faults are observed above the
Northern Snake Range décollement (Miller and
Gans, 1999; Miller et al., 1999a). The earlier
set consists of gently W-dipping faults, which
represent originally E-dipping normal faults
that have been rotated to W dips (e.g., Miller
et al.,, 1983). These faults are deformed by a
younger set of steeply E-dipping faults that tilt
Cambrian—Pennsylvanian rocks to typical dips
of 25°-45°W. In the western third of the range,
rocks above the Northern Snake Range décolle-
ment are deformed by one set of W-dipping nor-
mal faults that tilt Cambrian—Devonian rocks to
typical dips of 20°E (Johnston, 2000). All nor-
mal faults in the range, with the exception of one
second-order fault, terminate downward into the
Northern Snake Range décollement.

The Paleogene subvolcanic unconformity is
not exposed in this part of the Snake Range.
However, Permian rocks are exposed in several
localities within 5 km to the N and S of the sec-
tion line (Miller et al., 1999a; Johnston, 2000),
and they are the highest pre-extensional strati-
graphic level preserved. Also, 35 km to the N,
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Oligocene volcanic rocks overlie Permian
rocks, with a <5° difference in dip angle across
the unconformity (Gans and Miller, 1983).
Therefore, on the restored cross section, the un-
conformity is approximated as bedding parallel
and lying within the Permian section (footnote 7
in Plate DR1).

On the cross section, the majority of fault-
bounded blocks above the Northern Snake
Range décollement contain Ordovician,
Silurian, and Devonian rocks. The Ordovician—
Devonian rocks preserved in all of these blocks
were restored by placing them as close together
as possible without overlapping. This yielded
a 12.7 km minimum pre-extensional width for
the Northern Snake Range décollement hang-
ing wall, corresponding to 15.5 km of extension
(122%). This estimate falls short of the 450%—
500% extension estimated for the Northern
Snake Range décollement hanging wall ~5 km
to the north by Miller et al. (1983), though their
extension magnitude (24.3 km) is of a simi-
lar order to my estimate. Much of this varia-
tion can be attributed to the difference in the
relative ratios of preserved stratigraphic levels.
My section line is dominated by Ordovician—
Devonian rocks, whereas theirs contained an
approximately even distribution of Cambrian to
Pennsylvanian rocks. However, in light of these
differing estimates, I chose to use published
strain data from the footwall of the Northern
Snake Range décollement (described below) as
a more representative measure for estimation of
extension.

In the footwall, Neoproterozoic—Cambrian
metasedimentary rocks were deformed by co-
axial stretching and thinning (e.g., Miller et al.,
1983; Gans et al., 1985; Lee et al., 1987). All
rocks exhibit a penetrative foliation that is sub-
parallel to the Northern Snake Range décolle-
ment, and a WNW-trending stretching lineation,
which decreases in intensity toward the west,
eventually dying out at the western flank of the
range (Gans et al., 1985). Rocks in the Northern
Snake Range décollement footwall include the
Cambrian Prospect Mountain Quartzite, which
is attenuated to a thickness of <200 m in the east-
ern part of the range (Gans and Miller, 1983),
and underlying metasedimentary rocks of the
Neoproterozoic McCoy Creek Group (Miller
and Gans, 1999). These units are intruded by
Jurassic granite that is sheared concordant to
foliation in the metasedimentary units (Miller
et al., 1999a).

The magnitude of stretching in the footwall
of the Northern Snake Range décollement was
estimated by Lee et al. (1987), who integrated
finite strain data with a comparison of the at-
tenuated thickness of the Cambrian Prospect
Mountain Quartzite to its undeformed regional
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thickness, which yielded an average extension
estimate of 250%. On the restored cross section,
widths were restored using this extension value,
and unit thicknesses were restored to the average
1.2 km regional thickness of Cambrian quartzite
(Miller et al., 1983; Lee et al., 1987) and the
5 km minimum thickness of Neoproterozoic
rocks exposed in the Deep Creek Range 100 km
to the N (Stewart, 1980). Using this strain mag-
nitude, a total of 21.9 km of extension was ac-
commodated by stretching and thinning.

Rocks in the footwall of the Northern Snake
Range décollement are shown restored to a
depth range of 7-13 km, after Miller et al.
(1983). However, the ~23-30 km peak burial
depth range obtained from thermobarometry
(Lewis et al., 1999; Cooper et al., 2010) is also
projected onto the cross section (footnote 4 in
Plate DR1). Attainment of these depths has been
interpreted as the result of Cretaceous structural
thickening, with models ranging from burial by
E-vergent thrust sheets in the western part of the
Sevier thrust belt (Bartley and Wernicke, 1984)
to W-vergent back thrusting (Lewis et al., 1999).
Due to the large uncertainties in reconstructing
the pre-extensional geometry at these depths, 1
took a simplified approach based on published
constraints for the original dip angle of the
Northern Snake Range décollement, including:
(1) the 25°-30°E dip of the subsurface projec-
tion of the Northern Snake Range décollement
on the COCORP profile (Allmendinger et al.,
1983); (2) evidence for up to 40° of rotation
of footwall rocks during exhumation, which
implies that portions of the Northern Snake
Range décollement dipped this steeply (Lee,
1995); and (3) the pre-extensional dip of 20°E
shown on the structural models of Bartley and
Wernicke (1984). Subsurface projections of the
Northern Snake Range décollement are shown
at 20°, 30°, and 40° dip angles, and their inter-
sections with the peak burial range of footwall
rocks yielded an offset range of 34 + 13 km,
which corresponds to an E-W extension magni-
tude of 30 = 14 km.

Schell Creek Range

On the eastern flank of the Schell Creek
range, ~20°W-dipping Cambrian—Ordovician
rocks are deformed by several closely spaced,
~15°W-dipping (Table DR1), first-order faults
that omit stratigraphy (Drewes, 1967), which
are interpreted here as down-to-the-W normal
faults. These faults are shown merging into one
master fault (footnote 10 in Plate DR1). In the
central and western parts of the range, E-dip-
ping Devonian—Permian rocks above this mas-
ter fault exhibit a hanging-wall cutoff angle of
~50°. To match this relationship in the footwall,

Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/131/1-2/99/4604506/99.pdf
bv niversity of Nevada Reno user

the master fault was projected above the erosion
surface to the east with an ~50° footwall cutoff
angle (footnote 9 in Plate DR1). Therefore, the
master fault is modeled as listric, with a high
cutoff angle through Cambrian—Permian rocks
and a flat near the base of the Cambrian sec-
tion. In addition to the master fault, Devonian—
Permian rocks in the western part of the range
are also deformed by a series of dominantly
W-dipping, first and second-order normal faults.

Eocene (ca. 36-35 Ma; Druschke et al.,
2009b) sedimentary and volcanic rocks are
exposed in the western and central parts of the
range and dip 10°-25°E. The unconformity at
their base cuts up section to the east, from Mis-
sissippian to Permian levels. Eocene rocks are
cut by both low- and high-normal faults, and
they do not overlap any normal faults (Drewes,
1967). Restoration of normal faults and tilting
yielded 9.3 km of extension (78%). This is a
minimum estimate, as matching cutoffs for
the projected master normal fault were drafted
to minimize extension. The pre-extensional
geometry defines a 15°E-dipping homocline
of Paleozoic rocks. Fifteen kilometers to the
north, an ~4.5-km-thick section of Neoprotero-
zoic-Lower Cambrian rocks is exposed on the
eastern flank of the range (Young, 1960; Gans
etal., 1985); these rocks were projected onto the
cross section.

Egan Range

In the Egan Range, Pennsylvanian—Permian
rocks are deformed by the Butte synclinorium,
a NNW-trending structural low that can be
traced along trend for 250 km (Hose, 1977;
Gans and Miller, 1983; Long, 2012). The east-
ern part of the range is deformed by several
W-dipping, second-order normal faults, and
the E-dipping Eureka fault, which cuts Eocene
rocks (Brokaw, 1967). In the central part of the
range, the ~10°W-dipping (Table DR1) Kaibab
fault has at least 4 km of offset, and field rela-
tions 5 km to the N of the section line show
that motion on this fault predated late Eocene
volcanism (Brokaw and Barosh, 1968; Gans
etal.,2001). The W part of the range consists of
gently dipping Pennsylvanian—Permian rocks
that are deformed by an array of W- and E-dip-
ping, second-order, high-angle normal faults
(Brokaw and Heidrick, 1966). Eocene (Fouch
et al., 1979; Gans et al., 2001) sedimentary and
volcanic rocks dip 25°—45°E in the eastern part
of the range (Brokaw, 1967) but change to a dip
of 20°-25°W in the central part of the range
(Brokaw and Heidrick, 1966). Retrodeforma-
tion yielded 8.8 km of extension (68%). The
pre-extensional geometry defines the Butte syn-
clinorium on this transect as a >12-km-wide,
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5-km-tall, E-vergent syncline, with a western
limb that dips as steeply as 75°E and an eastern
limb that dips 30°—40°W.

White Pine Range

The White Pine Range exposes Mississippian—
Permian rocks that are deformed by the N-trend-
ing [llipah anticline, Little Antelope syncline, and
Emigrant anticline (Humphrey, 1960). The Illipah
anticline, which can be correlated along trend for
~100 km (Long, 2015), is a tight fold with an
eastern limb that dips as steep as ~50°-80°E and
a western limb that dips as steep as ~50°W. In its
western limb, an E-vergent thrust fault mapped
by Humphrey (1960) places Mississippian rocks
over Pennsylvanian rocks. To the west, the Little
Antelope syncline and Emigrant anticline are
open folds with limb dips of ~10°-30°.

The White Pine Range is deformed by steeply
dipping, first- and second-order normal faults,
which dip E on the western flank of the range
and W in the central and eastern portions of the
range (Tripp, 1957; Humphrey, 1960; Hose and
Blake, 1976). Multiple across-strike exposures
of Eocene—Oligocene volcanic and sedimentary
rocks define minimal (<3°) overall eastward tilt-
ing. Retrodeformation yielded 2.8 km of exten-
sion (13%).

Pancake Range

In the Pancake Range, Mississippian—Penn-
sylvanian rocks are deformed by an open syn-
cline with ~20° limb dips (Fig. DR1). Paleogene
volcanic rocks on the western side of the range
dip 15°-20°W, but they are subhorizontal on
the eastern side (Tripp, 1957; Fig. DR1). Two
steeply dipping, second-order normal faults
intersect the section line, and both offset Paleo-
gene volcanic rocks. Retrodeformation yielded
0.4 km of extension (7%).

Diamond Mountains, Fish Creek Range,
and Mahogany Hills

In the Diamond Mountains, Silurian—Missis-
sippian rocks are deformed by the open Pinto
Creek syncline and Sentinel Mountain syn-
cline (Nolan et al., 1974; Long, 2015) and the
E-vergent Moritz-Nager thrust (French, 1993).
First-order normal faults include steeply dip-
ping faults that bound a horst on the eastern side
of the range, and the steeply W-dipping Pinto
Summit fault, which all offset the basal uncon-
formity of the Early Cretaceous Newark Canyon
Formation, and which are all overlapped by late
Eocene volcanic rocks (Long et al., 2014a).

In the Fish Creek Range, the steeply E-dip-
ping Hoosac fault system and the steeply W-
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dipping Dugout Tunnel fault are overlapped by
late Eocene volcanic rocks (Long et al., 2014a).
In the western part of the range, Silurian—Devo-
nian rocks are deformed by the Reese and Berry
detachment system, consisting of two shallowly
W-dipping faults that sole into a flat at the top
of the Ordovician section, and that are cut by
Eocene granite dikes (Cowell, 1986; Long
et al., 2014a).

Retrodeformation of normal faults in the
Fish Creek Range and Diamond Mountains
reveals the Eureka culmination, a 20-km-wide,
5-km-tall open anticline. The culmination is in-
terpreted as a fault-bend fold that formed from
eastward displacement on the underlying Ratto
Canyon thrust over a footwall ramp (Long et al.,
2014a). The basal Newark Canyon Formation
unconformity has been structurally elevated
~5 km across the E limb of the culmination, and
the Newark Canyon Formation is folded in the
hinge zone of the Pinto Creek syncline (Long,
2015). Long et al. (2014a) proposed that the
Newark Canyon Formation was deposited in a
piggyback basin that developed on the E limb of
the culmination as it grew.

After its construction, the culmination was
extended by two sets of first-order normal
faults that predate ca. 37 Ma volcanism (Long
et al., 2014a). The older set consists of oppo-
sitely dipping faults in each limb, including the
Hoosac fault system and Reese and Berry de-
tachment system. The younger set consists of
steeply W-dipping normal faults, including the
Pinto Summit and Dugout Tunnel faults, which
accommodated 20°-30° of eastward tilting.
Thermochronology data collected from Cam-
brian quartzite in the footwall of the Dugout
Tunnel and Hoosac faults revealed rapid Late
Cretaceous—Paleocene (ca. 75-60 Ma) cooling,
which was interpreted to date the motion of both
fault sets (Long et al., 2015). The Paleogene un-
conformity is presently subhorizontal, which
indicates minimal extension since ca. 37 Ma
(Long et al., 2014a).

In the Mahogany Hills, shallowly E-dipping
Silurian—Devonian rocks are deformed by
second-order, high-angle normal faults, and a
shallowly W-dipping first-order normal fault
that is overlapped by Paleogene volcanic rocks
(Schalla, 1978). The Paleogene unconformity
in the Mahogany Hills has undergone minimal
(£5°) westward tilting (Schalla, 1978).

Retrodeformation of all normal faults in the
Mahogany Hills, Fish Creek Range, and Dia-
mond Mountains yielded 10.9 km (50%) of
extension. All first-order normal faults in these
ranges are interpreted to be related to the Late
Cretaceous—Paleocene extension event docu-
mented by Long et al. (2015). Therefore, be-
cause the Paleogene unconformity postdates
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extension, it was not restored to horizontal on
Plate DR1. Rocks in these three ranges were
retrodeformed to account for 20°-30° of east-
ward tilting of Late Cretaceous to late Eocene
conglomerate in the Fish Creek Range that pre-
dated (or was contemporary with) extension
(Long et al., 2014a). This restored the Paleogene
unconformity to a westward dip (Plate DR1).

In the Mahogany Hills and Fish Creek
Range, the E-vergent Roberts Mountains thrust,
the basal structure of the Mississippian Antler
orogeny (e.g., Speed and Sleep, 1982), was pro-
jected above the modern erosion surface (foot-
note 21 in Plate DR1). Fifteen kilometers north
of the section line, the Roberts Mountains thrust
places the Ordovician Vinini Formation over
Mississippian rocks (Bentz, 1983). In the Fish
Creek Range, Mississippian rocks are overlain
by Permian rocks, and the Vinini Formation
is not present (Nolan et al., 1974; Long et al.,
2014a). Therefore, the Roberts Mountains thrust
is shown tipping out at the contact between Mis-
sissippian and Permian rocks (footnote 20 in
Plate DR1).

Monitor Range

Moderately W-dipping Ordovician—Devo-
nian rocks are exposed on the east side of the
Monitor Range (Bortz, 1959), and gently E-dip-
ping Ordovician-Silurian rocks are exposed on
the west (Lohr, 1965). In the E part of the range,
the Roberts Mountains thrust is duplicated by
a younger thrust fault that carries Ordovician
rocks (Bortz, 1959). This fault is correlated with
an E-vergent thrust mapped in the W part of the
range (Lohr, 1965) that places Ordovician rocks
over Silurian rocks.

The Paleogene subvolcanic unconformity
dips 5°-10°E in the western part of the range,
and it is subhorizontal in the eastern part (Bortz,
1959; Stewart and Carlson, 1978). The range is
deformed by a series of E- and W-dipping, sec-
ond-order normal faults, and restoration yielded
1.6 km of extension (10%). Volcanic rocks are
cut by normal faults and do not overlap them.

Toquima Range

In the eastern Toquima Range, gently W-
dipping Ordovician—Devonian rocks underlie
the Roberts Mountains thrust, which carries the
Ordovician Vinini Formation. In the footwall
of the Roberts Mountains thrust, an E-vergent
thrust fault was mapped that places Ordovician
rocks over Devonian rocks (McKee, 1976). This
thrust fault is shown cutting the Roberts Moun-
tains thrust above the erosion surface.

The unconformity at the base of early Oligo-
cene (ca. 32.3-30.1 Ma) volcanic rocks dips
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2°-10°W in the western half of the range and
10°E in the eastern half (McKee, 1976). The
range is deformed by E- and W-dipping, sec-
ond-order normal faults, and retrodeformation
yielded 1.3 km of extension (6%). Oligocene
volcanic rocks are cut by normal faults and do
not overlap them.

Toiyabe Range

The Toiyabe Range exposes steeply W-dip-
ping Cambrian, Ordovician, and Permian rocks
in the footwall of the E-vergent Golconda thrust,
the basal structure of the Permian—Triassic So-
noma orogeny (Ferguson and Cathcart, 1954;
Stewart and Carlson, 1978). The Golconda
thrust carries the Mississippian—Permian Haval-
lah Formation, which consists of volcanic rocks
interlayered with pelagic sedimentary rocks
(Ferguson and Cathcart, 1954; Babaie, 1987).

Oligocene volcanic rocks dip 15°W in the
western part of the range (Table DR1). At this
latitude, the Toiyabe Range is deformed by a
single first-order, steeply W-dipping normal
fault (Ferguson and Cathcart, 1954). Restora-
tion yielded 1.3 km of extension (12%).

Shoshone Mountains

In the Shoshone Mountains, Triassic—
Jurassic sedimentary and volcanic rocks dip
gently W in the eastern part of the range, but
they are steeply dipping and deformed by E-
dipping thrust faults in the western part of the
range (Stewart and Carlson, 1978; Kleinhampl
and Ziony, 1985; Whitebread et al., 1988).
This transition demarcates the eastern limit of
the Luning-Fencemaker thrust belt (Oldow,
1984). Here, the leading portion of the thrust
belt is modeled as a triangle zone, with steeply
E-dipping Triassic—Jurassic rocks being car-
ried by W-vergent thrust faults, and a frontal,
W-vergent, overturned fold interpreted to have
formed above a blind thrust fault.

The Oligocene subvolcanic unconformity
dips 2°-3°W. Three second-order normal faults
intersect the section line, and retrodeformation
yielded 0.5 km of extension (6%). Oligocene
volcanic rocks as young as ca. 24.4 Ma are cut
by normal faults (Whitebread et al., 1988).

Paradise Range

In the Paradise Range, Triassic—Jurassic sedi-
mentary and volcanic rocks are overlain by Oli-
gocene—early Miocene tuffs and lavas (Ekren
and Byers, 1986a; John, 1988; Silberling and
John, 1989). The range records evidence for
high-magnitude, domino-style extension ac-
commodated by two first-order, down-to-the-W
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normal faults that presently dip 0—15°W. In the
E part of the range, volcanic rocks dip ~25°E
(John et al., 1989) and are cut by a gently W-
dipping normal fault that is here correlated
with the Paradise fault mapped in the central
part of the range by Silberling and John (1989).
In the W part of the range, volcanic rocks dip
~30°-45°E (Ekren and Byers, 1986a; Silberling
and John, 1989) and are cut by the gently W-
dipping Sheep Canyon fault. The Sheep Canyon
and Paradise faults have offset magnitudes of
12 and 8 km, respectively. In addition, a series of
younger, E- and W-dipping, high-angle, first-
and second-order normal faults also deform the
range. Restoration yielded 18.8 km of extension
(153%). Retrodeformation of the Paradise and
Sheep Canyon faults restores their original dips
to 40°-50°W.

Triassic and Jurassic rocks in the Paradise
Range occupy the central portion of the Luning-
Fencemaker thrust belt and exhibit complex
deformation geometries. Many Triassic—Juras-
sic stratigraphic units are grouped together on
source maps, and their dips commonly change
over short distances from upright to overturned,
implying common mesoscale folding. In addi-
tion, large areas of Triassic—Jurassic exposures
contain no measurements on source maps.
Therefore, all Triassic—Jurassic units in the Par-
adise Range are shown as undifferentiated, and
no attempt was made to illustrate their structural
geometry. However, the E-vergent Gabbs and
Holly Wells thrusts mapped by Silberling and
John (1989) are shown, which dip 20°-45°W
after restoration of extension.

Gabbs Valley Range and Gillis Range

The Gabbs Valley and Gillis Ranges occupy
the central portion of the Walker Lane province
and contain four fault systems (Petrified Spring,
Benton Springs, Gumdrop Hills, and Agai Pah
Hills faults) that have accommodated ~40 km
of cumulative dextral offset (Ekren and Byers,
1984; Hardyman, 1984; Faulds and Henry,
2008). No attempt was made to retrodeform
dextral offset. Instead, the cumulative restored
length of packages of rock between these strike-
slip faults was used to estimate extension, simi-
lar to the technique used in all other ranges.

In the Gabbs Valley Range, ~30°E-dipping
Oligocene—early Miocene volcanic rocks over-
lie Triassic sedimentary and volcanic rocks
(Ekren and Byers, 1986a). In the Gillis Range,
Oligocene—Miocene volcanic rocks dip ~20°E,
and on the W flank of the range, they dip ~20°W
(Hardyman, 1980; Ekren and Byers, 1986b).
Both ranges are deformed by steeply W-dipping,
first- and second-order normal faults, and retro-
deformation yielded 4.9 km of extension (13%).
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In the Gillis Range, Hardyman (1980) mapped
all contacts between pre-Cenozoic rock units and
Oligocene—Miocene volcanic rocks as low-angle
normal faults and interpreted them to be related
to dextral faulting. However, as no information
is available on their motion sense, and their exis-
tence has been disputed by Eckberg et al. (2005),
who mapped them as unconformities, offset on
these faults was not incorporated into the estima-
tion of extension (footnote 34 in Plate DR1).

Wassuk Range, Gray Hills, and
Cambridge Hills

The Wassuk Range, Gray Hills, and Cam-
bridge Hills record evidence for high-magni-
tude domino-style extension (discussed in detail
in Surpless et al., 2002; Stockli et al., 2002;
Surpless, 2012). Oligocene-middle Miocene
volcanic rocks, which were deposited atop
Jurassic—Cretaceous granitic plutons and Trias-
sic metavolcanic rocks, have been tilted to dips
of 45°-60°W, with rotation accommodated by
motion on closely spaced, first-order, down-
to-the-E faults that presently dip 10°-15°E
(Bingler, 1978; Stewart and Dohrenwend,
1984). A younger set of second-order, steeply
E-dipping normal faults cuts the older normal
faults. Retrodeformation yielded 18.0 km of ex-
tension (182%), which is similar to the ~200%
estimate of Surpless (2012).

Singatse Range and Buckskin Range

The Singatse and Buckskin Ranges represent
a classic example of high-magnitude, domino-
style extension (Proffett, 1977; Proffett and
Dilles, 1984). Here, Oligocene-middle Mio-
cene volcanic rocks, which were deposited atop
Jurassic granitic plutons containing roof pen-
dants of Jurassic metavolcanic rocks, have been
tilted to dips of ~60°W. Tilting was accommo-
dated by first-order normal faults that started out
at 60°-70°E dip angles but were rotated to dips
of 5°-15°E (Proffett and Dilles, 1984; Stewart,
1999). A younger generation of steeply E-dip-
ping, first- and second-order normal faults cuts
the older fault set. Restoration yielded 12.5 km
of extension (179%), which is in agreement
with the >150% estimate of Proffett (1977).

Pine Nut Mountains

In the eastern part of the Pine Nut Mountains,
~35°W-dipping Oligocene tuffs overlie Juras-
sic granite plutons that contain roof pendants
of Jurassic metavolcanic rocks (Stewart, 1999).
In the western part of the range, 15°-30°W-
dipping late Miocene (ca. 7-2 Ma) sedimentary
rocks of the Gardnerville Basin (Cashman et al.,
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2009) overlie Jurassic—Cretaceous granite plu-
tons and Jurassic roof pendants (Stewart, 1999).
The range is deformed by steeply E-dipping,
first- and second-order normal faults, and retro-
deformation yielded 4.1 km of extension (20%).

Carson Range

In the Carson Range, ~5°W-dipping Oligo-
cene—Miocene volcanic rocks overlie Cretaceous
granite plutons and Triassic—Jurassic metavol-
canic rocks (Armin et al., 1983). The range is
deformed by four steeply E-dipping, first- and
second-order normal faults, and a steeply W-dip-
ping second-order normal fault demarcates the
western limit of extension. Retrodeformation
yielded 1.7 km of extension (11%). To the west,
the Sierra Nevada range is dominated by Creta-
ceous granitic rocks (Loomis, 1983), and multi-
ple across-strike exposures of Oligocene—Mio-
cene volcanic rocks define a 2°W average dip for
their basal unconformity (Loomis, 1983).

DISCUSSION

Implications of Extension Magnitude for
Pre-Extensional Crustal Thickness

The present-day length of the cross section
between the E and W limits of extension is
733.9 km (Table 2). Assuming that rocks in the
footwall of the Northern Snake Range décolle-
ment restore to stratigraphic depths of 7-13 km
(Miller et al., 1983), which is the geometry
shown on Plate DR1, 208.1 + 20.4 km of cumu-
lative extension (40% =+ 4%) can be measured
on the cross section. However, an additional 30
+ 14 km of extension (see discussion above)
would be required when taking into account
thermobarometry data from rocks in the foot-
wall of the Northern Snake Range décollement
(Cooper et al., 2010). Since data and field re-
lations have been presented that support both
end-member scenarios for the Northern Snake
Range décollement, here I add in this additional
extension as an average and uncertainty (22
+ 22 km; Table 2). This yields 230.1 + 42.4 km
of cumulative extension (46% + 8%), which is
interpreted to be a more representative estimate,
as it is compatible with these differing structural
models. This estimate is in agreement with esti-
mates from map-view reconstructions, which
range between ~42% (Coney and Harms, 1984)
and ~50% (McQuarrie and Wernicke, 2005)
along the latitude of the cross section, and an
~52% estimate at 39°N from paleomagnetic
data from the Sierra Nevada (Bogen and Sch-
weickert, 1984). This estimate is also similar to
cumulative extension estimates further to the
south in the Basin and Range, between ~36°N
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and 37°N, which range from 215 to 300 km
(Snow and Wernicke, 2000; McQuarrie and
Wernicke, 2005). However, the percent exten-
sion at these latitudes is much larger, at ~200%
(McQuarrie and Wernicke, 2005).

Crustal thickness data from the EarthScope
USArray (Gilbert, 2012), which are constrained
by 17 proximal seismic stations across the width
of the cross section (Fig. 3B), define an average
modern thickness of 37 + 1 km. Assuming that
the lower crust was homogeneously extended
and thinned by the same magnitude as the up-
per crust (e.g., Gans, 1987; Colgan et al., 2006),
restoration of cumulative extension across the
province yields an average pre-extensional
thickness of 54 + 6 km (Table 3). This is inter-
preted as a maximum thickness, as it does not
account for any rock that was potentially added
to the base of the crustal column during Ceno-
zoic magmatism. Studies in other areas of the
Great Basin have estimated as much as ~5 km
of crustal addition from magmatic underplating
(Gans, 1987; Catchings, 1992). However, since
the amount that was added along the section
line (if any) is not known, it was not factored
into the estimate. This estimate is similar to the
55-65 km crustal thickness proposed to have
been attained across the Cordilleran retroarc
based on isotopic ratios from granitic plutons
(Chapman et al., 2015), but it is greater than the
~45 km average thickness estimated at ~40°N
using mass balance considerations (Colgan and
Henry, 2009). However, most of this difference
can be attributed to N-S variations in present-
day crustal thickness (Gilbert, 2012). At 39°N,
the crust is in most places ~5 km thicker, and in
some places up to ~10 km thicker, than at 40°N-
41°N (Fig. 1A). This is also illustrated on Plate
DRI, which allows direct comparison of Moho
depth from the COCORP seismic profile at
~40°N and the EarthScope thickness data along
the section line.

Additional details on potential E-W varia-
tions in pre-extensional crustal thickness can be
gained by analyzing spatial patterns of high- and
low-magnitude average extension. The cross
section can be divided into four distinct domains
(Fig. 3C; Table 3): (1) the Wasatch Plateau to the
Canyon Range (11% extension); (2) the Sevier
Desert Basin to Antelope Valley (66% + 16%);
(3) Antelope Valley to Ione Valley (11% + 3%);
and (4) Ione Valley to the Carson Range (60%
+ 5%). Assuming that lower-crustal extension
and thinning were equal in magnitude to upper-
crustal extension (e.g., Colgan et al., 2006),
significant thickness differences are implied;
domains 1 and 3 restore to 39 + 1 km and 41
+ 3 km, respectively, and domains 2 and 4 re-
store to 60 + 11 and 66 = 5 km, respectively
(Fig. 3D). Interpreting these differences as
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geologically meaningful requires an additional
assumption that E-W and N-S thickness dif-
ferences were not significantly evened out by
lower-crustal flow. In any case, the differences
implied by this simple reconstruction should
be considered maxima. However, the two high-
extension domains can be related spatially to
portions of the Cordilleran orogenic belt that are
predicted to have the thickest crust.

Domain 1 (Wasatch Plateau to Canyon
Range) lies within the frontal portion of the
Sevier thrust belt, where relatively minimal
thickening (between 5 and 8 km; measured by
summing the vertical thickness above the top of
the undeformed, pre-orogenic sedimentary sec-
tion) was accomplished by synorogenic depo-
sition and structural duplication of an ~3-km-
thick section of pre-orogenic rocks (DeCelles
and Coogan, 2006). The 39 + 1 km restored
thickness of domain 1 is compatible with mini-
mal thickening and is similar to the present-day
42 + 1 km crustal thickness of the Colorado Pla-
teau to the east (Gilbert, 2012).

Domain 2 (Sevier Desert Basin to Ante-
lope Valley) includes the western portion of
the Sevier thrust belt and a wide region of its
hinterland. Its eastern boundary lies near the
trace of the Canyon Range thrust, which de-
lineates the eastern limit of significant crustal
thickening, accommodated by two main pro-
cesses: (1) translation of the thick passive-
margin basin section eastward over the Wasatch
hinge line, a narrowly defined zone in western
Utah across which the Neoproterozoic—Trias-
sic section increases in thickness from ~3 to
>15 km, and which is interpreted to mark the
eastern limit of Neoproterozoic rifting of North
American continental crust (e.g., Poole et al.,
1992); and (2) westward underthrusting of an
~220 km length of unrifted North American
continental crust, which is a kinematic require-
ment of the shortening recorded in the Sevier
thrust belt (Fig. 3E; e.g., DeCelles and Coogan,
2006; DeCelles et al., 2009).

Across westernmost Utah and eastern Ne-
vada, evidence for significant upper-crustal
thickening is lacking, and the cumulative mag-
nitude of shortening accommodated by folding
and thrust faults is estimated at only a few tens
of kilometers (Taylor et al., 2000; Greene, 2014;
Long, 2012, 2015). However, the underthrusting
of unrifted continental crust can account for sig-
nificant crustal thickening of this region. Under-
thrusting can account for at least ~12 km of
addition to the crustal column under eastern Ne-
vada and westernmost Utah (estimated from the
difference in basin thickness across the Wasatch
hinge line). This estimate is likely a minimum,
as it does not account for any potential synoro-
genic lower-crustal thickening.
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Geometry and magnitude of extension in the Basin and Range Province (39°N)

TABLE 3. DATA SUPPORTING ESTIMATION OF PRE-EXTENSIONAL CRUSTAL THICKNESS

Present-day Average present- Cross-sectional

Pre-extensional Pre-extensional

length day thickness area Extension Percent length thickness
Extension domain (km) (km) (km?) (km) extension (km) (km)
Domain 1: Wasatch Plateau to Canyon Range 71.2 35.00 = 1.00 2490 + 70 6.9 11 64.3 39 +1
Domain 2: Sevier Desert Basin to Antelope Valley 344.8 35.00 = 1.00 12070 + 345 137.5+324 66=+16 207.4 +32.4 60 + 11
Domain 3: Antelope Valley to lone Valley 120.0 36.75 + 1.50 4410 + 180 11.5+35 11+3 108.5+3.5 41+3
Domain 4: lone Valley to Carson Range 197.9 40.75 + 1.00 8065 + 200 74.3+6.6 605 123.6 £ 6.6 66 +5
Full width of Basin and Range Province 733.9 36.75 + 1.00 26970 +735 230.1+424 46+8 503.8 +42.4 54+6

Notes: Average present-day thickness and associated uncertainty were calculated from data presented in Gilbert (2012); values were rounded to nearest 0.25 km. Cross-
sectional area and associated error were rounded to nearest 5 km?. Pre-extensional thickness was calculated by assuming lower crust was homogeneously extended and
thinned by same magnitude as upper crust. Pre-extensional thickness and associated uncertainty were rounded to nearest 1 km.

Based on the shortening accommodated in
the Sevier thrust belt, the matching hanging-
wall (i.e., within the Sevier thrust belt) and foot-
wall (i.e., beneath the basal Sevier décollement)
positions of the hinge line should be separated
by ~220 km. In the Sevier thrust belt, the east-
ern part of the hinge line has been eroded in the
leading edge of the Canyon Range thrust sheet,
but the westernmost portion lies above the Can-
yon Range culmination (DeCelles and Coogan,
2006). The corresponding underthrusted po-
sition restores approximately below the Fish
Creek Range, which is the near the western
boundary of domain 2 (Fig. 3E). Therefore, the
difference in pre-extensional thickness between
domains 2 and 3 can likely be attributed to the
western limit of unrifted North American conti-
nental crust. Significant E-W differences in the
thickness of underthrusted crust have also been
invoked to explain similar changes in orogenic
architecture in the hinterland of the Cordilleran
thrust belt in Canada (e.g., Price, 1981; Even-
chick et al., 2007).

The 66% =+ 16% average extension across
domain 2 is comparable to published estimates
from map-view reconstructions (~70% through
easternmost Nevada; Coney and Harms, 1984)
and from regional cross sections at 40°N (55%—
T77%; Gans, 1987; Smith et al., 1991). The 60
+ 11 km pre-extensional thickness obtained for
domain 2 is within error of most published esti-
mates for eastern Nevada, which range from 45
to 60 km (Coney and Harms, 1984; Gans, 1987;
Smith et al., 1991; DeCelles and Coogan, 2006;
Colgan and Henry, 2009).

Domain 3 (Antelope Valley to Ione Valley) lies
within a region affected by late Paleozoic con-
tractional deformation (the Antler and Sonoma
orogenies). Along the cross section, E-vergent
thrust faults with kilometer-scale offset that cut
the Roberts Mountains thrust have been mapped
in the Monitor and Toquima Ranges (Bortz,
1959; Lohr, 1965; McKee, 1976) and could be
of Cordilleran age. However, the lack of region-
ally traceable thrust faults, significant erosion,
or development of significant structural relief
that postdates the Antler and Sonoma events
indicates that this was a region of limited upper-
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crustal shortening during Cordilleran orogene-
sis (e.g., Speed, 1983; Speed et al., 1988; Smith,
1992). The 41 + 3 km restored thickness for
domain 3 is similar to the ~45 km estimate of
Colgan and Henry (2009) ~100 km along strike
to the north.

Domain 4 (Ione Valley to Carson Range) in-
cludes the Luning-Fencemaker thrust belt and
the eastern portion of the Sierra Nevada mag-
matic arc. The Luning-Fencemaker thrust belt
accommodated significant shortening (55%—
75%; estimated in NW Nevada) through thrust-
ing, folding, and fabric development in Triassic
and Jurassic basinal rocks (Wyld, 2002; Wyld
et al., 2003). Integrating this estimate over the
~40 km restored width of the Luning-Fence-
maker thrust belt on the cross section indicates
the potential for ~50-120 km of shortening.
Therefore, the boundary between the Luning-
Fencemaker thrust belt and the little-deformed
region to the east, which corresponds approxi-
mately with the boundary between domains 3
and 4, is the site of another predicted E-W dif-
ference in crustal thickness during Cordilleran
orogenesis.

West of the Luning-Fencemaker thrust belt,
from the Gillis Range to the Sierra Nevada,
exposures are dominated by Jurassic—Creta-
ceous granite of the Sierran magmatic arc.
The primary mechanism for crustal thickening
here was growth of the Cordilleran arc system,
which was fueled by underthrusting of conti-
nental crust from the east (e.g., Saleeby et al.,
2003; DeCelles et al., 2009). The 66 + 5 km
restored thickness of domain 4 is comparable
to ~70 km crustal thickness estimates obtained
from barometric analyses of xenoliths from
the southern Sierran arc, which consisted of an
~30-35-km-thick granitic batholith complex
underlain by a ~35-40-km-thick root of eclo-
gitic residues (Ducea and Saleeby, 1998; Ducea,
2001; Saleeby et al., 2003). Present-day crustal
thicknesses in the Sierra Nevada to the west of
the cross section are thinner (42 + 1 km; Gil-
bert, 2012), which has been attributed to late
Miocene—Pliocene delamination of the eclogitic
root (Ducea and Saleeby, 1998; Saleeby et al.,
2003). The ~66 km restored thickness of do-
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main 4 suggests that the eastern portion of the
arc at this latitude thinned largely as a result of
high-magnitude extension, with delamination
perhaps playing a more limited role.

Space-Time Patterns of Extension, and
Implications for Driving Mechanisms

The geodynamic influences that led to exten-
sion of thickened Cordilleran crust have been
the subject of long-standing debate (e.g., Coney
and Harms, 1984; Sonder and Jones, 1999; Col-
gan and Henry, 2009; Cassel et al., 2014). Many
have argued that most of the widening of the
Basin and Range Province was accomplished
from the middle Miocene to the present (e.g.,
Zoback et al., 1994; Miller et al., 1999b; Stockli
et al., 2001; Dickinson, 2002, 2006; Surpless
et al., 2002; Colgan et al., 2006, 2010; Faulds
and Henry, 2008; Colgan and Henry, 2009;
Henry et al., 2011), which has been attributed to
organization of the San Andreas transform into
a through-going strike-slip system on the south-
ern California coast by ca. 17 Ma (e.g., Atwater,
1970; Dickinson, 2002; Faulds and Henry, 2008).
Therefore, the decreasing influence of interplate
coupling that accompanied the transition from
Andean-type subduction to a transform bound-
ary is interpreted as the principal geodynamic
trigger that facilitated widespread collapse of
thick Cordilleran crust (e.g., Dickinson, 2002).
However, several studies have also presented
evidence for earlier, spatially isolated extension,
including during the Late Cretaceous—Paleo-
cene terminal stages of Cordilleran shortening
(e.g., Hodges and Walker, 1992; Camilleri and
Chamberlain, 1997; McGrew et al., 2000; Wells
and Hoisch, 2008; Druschke et al., 2009a; Wells
et al., 2012; Long et al., 2015), and during the
Eocene—early Miocene ignimbrite flare-up (e.g.,
Gans and Miller, 1983; Gans, 1987, 2001; John
et al., 1989; Dilles and Gans, 1995; Druschke
et al., 2009b; Long and Walker, 2015). In order
to explore potential geodynamic influences on
the space-time patterns of extension, published
timing constraints within ~100 km N or S of the
cross section line were graphed versus longitude
on Figure 4.
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Geometry and magnitude of extension in the Basin and Range Province (39°N)

of widespread extension in the middle Miocene.
In contrast, all of the high-magnitude extension
in domain 4 took place from the middle Mio-
cene to the present. Differences in upper-crustal
rheology may, in part, explain the varying exten-
sional histories of these two domains. The upper
crust of domain 4 is dominated by a vast gra-
nitic batholith complex up to ~25-30 km thick
(e.g., Ducea, 2001). In contrast, the upper crust
of domain 2 contains an ~15-km-thick section
of sedimentary rocks, consisting of interlayered
quartzite and argillite in the lower half, and
mostly carbonate and mudstone in the upper
half (e.g., Stewart, 1980). This thick sedimen-
tary section was riddled with strength anisotro-
pies, including stratigraphic contacts between
stronger and weaker lithologies, and inherited
Cordilleran contractional structures including
thrust faults, regional-scale folds, and the basal
décollement of the Sevier thrust belt. Therefore,
down to the quartz crystal-plastic transition at
~12-15 km (~300 °C at a geothermal gradient
of ~20-25 °C/km; e.g., Stipp et al., 2002), the
rheology of these two domains was likely quite
different, with a strong, isotropic granitic batho-
lith complex in domain 4, and an anisotropic,
deformed sedimentary section in domain 2 that
was relatively weak in comparison.

It has been documented that the dominant
control on the location of Cenozoic extension
was the spatial extent of crust thickened dur-
ing Cordilleran orogenesis (e.g., Dickinson,
2002). Therefore, gradients in crustal thickness
(and therefore gravitational potential energy)
between the Cordilleran crust and its surround-
ings can be interpreted as the underlying factor
that promoted extension (e.g., Dickinson, 2006;
Wells and Hoisch, 2008; Colgan and Henry,
2009; Cassel et al., 2014). However, the exten-
sion timing compilation supports a scenario
in which significant lateral gradients in gravi-
tational potential energy were maintained for
tens of millions of years, and punctuated geo-
dynamic driving events were necessary to trig-
ger major extensional episodes. Nearly all of
the extension in domain 2 can be related tem-
porally to specific geodynamic events, including
isostatic and thermal adjustment of the Sevier
orogenic wedge following Late Cretaceous
delamination of mantle lithosphere (Wells and
Hoisch, 2008; Wells et al., 2012), convective
heating, volcanism, and a decrease in inter-
plate coupling accompanying late Eocene—early
Miocene slab rollback (e.g., Coney and Harms,
1984; Humphreys, 1995; Dickinson, 2002), and
most importantly, the demise of Andean-type
subduction and increasing influence of the San
Andreas transform in the middle Miocene (At-
water, 1970; Faulds and Henry, 2008). There-
fore, though gradients in gravitational potential

Geological Society of America Bulletin, v. 131, no. 1/2

energy were the underlying driving mechanism,
geodynamic events that altered boundary condi-
tions, including the lithospheric density column,
interplate coupling, and plate-boundary con-
figuration, were necessary to initiate pulses of
gravitational collapse and caused extension to
proceed in distinct episodes.

CONCLUSIONS

(1) Retrodeformation of a cross section span-
ning the Basin and Range Province at ~39°N
yields 230 + 42 km of extension (46% + 8%)
and an average pre-extensional crustal thickness
of 54 + 6 km.

(2) Domains of high-magnitude (~60%—
66%) and low-magnitude (~11%) average ex-
tension can be defined at the scale of multiple
ranges, and these correspond spatially with Cor-
dilleran provinces that are predicted to have had
high and low crustal thicknesses, respectively.
Therefore, inherited variations in Cordilleran
crustal thickness are interpreted as the primary
control on strain distribution. The eastern high-
magnitude domain (60 + 11 km restored thick-
ness) corresponds with the western part of the
Sevier thrust belt and the spatial extent of thick,
underthrusted crust. The western high-mag-
nitude domain (66 + 5 km restored thickness)
corresponds with the eastern half of the Sierra
Nevada magmatic arc.

(3) The eastern high-magnitude domain
underwent a protracted, Late Cretaceous to Mio-
cene transition to an extensional regime, while
extension in the western high-magnitude domain
did not start until the Miocene. This is attrib-
uted to differences in rheology between eastern
Nevada, which contained an anisotropic upper
crust composed of deformed sedimentary rocks,
and the strong, isotropic, granitic upper crust
of the magmatic arc. Nearly all extension can
be related temporally to geodynamic triggering
events, including Late Cretaceous lithospheric
delamination and associated wedge adjust-
ment, late Eocene—early Miocene slab rollback
and accompanying volcanism, and most im-
portantly, middle Miocene establishment of the
San Andreas transform. Therefore, changes in
boundary conditions were necessary to initiate
distinct episodes of gravitational collapse.
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