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The distribution and elevation of the abandoned strath terraces along the Truckee River in the Carson Range on
the eastern flank of the Sierra Nevada are mapped and quantified with measurements from Lidar accompanied
byfield survey. Eachmapped strath terrace is formed by incision into theHunter Creek Sandstone and deposition
of fluvial gravel by the Truckee River. The gravel contains granitic boulders sourced from the glaciated
headwaters of the Truckee >20 km upstream from the terraces and display boulders ranging from 4 to 12 m
in dimension, in comparison to the <1 m dimension of boulders observed in the bedload of the modern Truckee
River. Be-10 terrestrial cosmogenic nuclide (TCN) surface exposure dating places limits on the age distribution of
the strath terraces. The terrace sediments are suggested to be glacial outwash deposits, temporally linked with
glacial cycles, and to record an average of ~0.3 mm/a tectonic uplift with respect to the Reno Basin over the
last ~350 ka. Building upon earlier studies, the observations collected here increase the number of terrace levels
previously mapped along the Truckee, provide initial quantitative bounds on the age of their formation, and fur-
ther point to tectonic uplift as an important component in preserving this most extensive suite of strath terraces
along the eastern flank of the Sierra Nevada.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The lower Truckee River between Verdi and Reno inNevada exhibits
in number and length the most extensive suite of strath terraces
preserved along the eastern flank of the Sierra Nevada. The Truckee
River (herein simply the Truckee) flows from Lake Tahoe in the Sierra
Nevada eastward to Pyramid Lake (Fig. 1A, B). The suite of terraces
between Reno and Verdi in Nevada first gained attention in the studies
of Birkeland (1964, 1968a, 1968b). He attributed the river terraces to
four periods of glaciation at the headwaters of the Truckee: the youngest
mid- to Late Pleistocene Tioga and Tahoe glacial stages manifest in well-
preserved moraines and yet older Donner and Hobart glacial stages
evidenced respectively in adjacent till sheets absent of moraine land-
forms and buried outcrop. Geologic maps of the area today generally
embrace Birkeland's mapping and correlations (e.g., Ramelli et al.,
2011 and Fig. 1B).

Motivated to further consider the causes contributing to development
and preservation of the terraces, we here combine field observation with
Lidar and 10Be terrestrial cosmogenic nuclide (TCN) dating methods to
further consider the number and timing of strath terraces and their
ky), lewis.owen@ncsu.edu
deposits along the Truckee. The resulting observations reveal the
existence of six distinct strath terraces, each most likely abandoned and
preserved as the result of tectonic uplift, and apparently associated with
periods of glaciation over the last several hundred thousand years, a
period significantly longer than preserved by the presence of moraines
elsewhere in the Sierra Nevada.

2. Correlation of terrace surfaces

Smooth, gently to moderately sloping terraces, alluvial fans, and
pediment surfaces along the Truckee contrast to surrounding rugged
topography (Fig. 1C). The terraces record alternating periods of incision
and lateral planation. The geomorphic expression of the terrace surfaces
and character of underlying deposits are detailed in Birkeland (1968a)
and Bell and Garside (1987). The terrace deposits and pediment surfaces
are developed on Neogene fluvial, fan-delta, and lacustrine deposits
(Fig. 2) of the Hunter Creek Sandstone deposited between 11 Ma and
2.5 Ma (Trexler et al., 2000; Kelly and Secord, 2009). Alluvial fan and
pediment surface deposits are generally poorly sorted angular and
subangular gravel sourced from adjacent higher topography. Terrace
deposits are rounded and subrounded cobble and boulder gravel. The
boulder fraction is largely andesite and basalt with a subordinate fraction
of granite composition derived only from upstream of the map area,
reflecting the geology higher up along the Truckee Canyon (e.g., Henry
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Fig. 2.Views illustrating contact separating overlying glaciofluvial gravel fromunderlyingHunter Creek Sandstone onmapped surfaces Q2 throughQ6.Waypoints give location of contacts.
Contact of gravel with Sandstone is hidden below slope debris. Thickness of gravel on Q6 is thus apparently large.
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and Perkins, 2001). Reexamination of the area confirms Birkeland's
(1968b) observations of the common presence of 2–3-m-diameter gran-
ite boulders on terrace surfaces, with themaximum diameter of boulders
on some terraces reaching upwards of 12 m (Fig. 3). Boulders in recent
alluvium along the Truckee are generally <1 m in diameter.
Fig. 1. Location and context of study area. (A) Position of study areawithin the SierraNevada-Gre
ice during last glacial maximum (shaded in blue and adapted from Rood et al., 2011a). The La
highstand as a dashed line. (B) Location of terraces (black box) in context to active faults of
simplified and extended from Birkeland (1963, 1964, 1968a), Sylvester et al. (2012), quadra
2020) with reference to available Lidar (USGS, 2019) and aerial photographs. (C) Hillshade im
are kilometers along the Truckee (blue) from arbitrary point upstream. Area of image outline
graded to past levels of the Truckee colored as function of relative age. Stars mark sites of
individual samples in Table 1. Waypoints and photos of each sample are archived in Suppleme
Terraces showing continuity and similar elevation above the Truckee
stream grade are considered to share a similar age of abandonment and
approximately reflect river elevation at the time of abandonment. Slop-
ing surfaces of inactive alluvial fans and pediments likewise grade to the
level of the adjacent river prior to their incision and abandonment.
at Basin context (white box) on topographic base of Danielson andGesch (2011). Extent of
ke Tahoe-Truckee-Pyramid Lake drainage shown in navy blue and pluvial Lake Lahontan
the region (black lines) on generalized map of Quaternary deposits modified, adapted,
ngle maps of the region published by the Nevada Bureau of Mines and Geology (NBMG,
age constructed from lidar-derived 1-m digital elevation model (USGS, 2019). Numbers
d by blackbox in part B. (D) Abandoned fluvial terraces and alluvial fans pediments that
sampling for TCN surface exposure analysis. Numbers in stars correspond to listing of
ntary Table S2 and Fig. S2.



Fig. 3. Common occurrence of fluvially transported boulders of 3–4 m in dimension with some reaching >12 m on each of the Q1 to Q6 surfaces. Q1 and Q2 images show boulders on
terraces, Q4 along the terrace riser, and Q3, Q5, and Q6 images show collections of large boulders remaining in gravel pits on the respective surfaces. Waypoints of each site annotated.
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Terrace surfaces judged to share the same age of abandonment are
mapped and numbered Q1 (youngest) through Q6 (oldest), with nota-
tions n and s being north and south of the river, respectively (Fig. 1D).
The notation p for Q6p refers to pediment surface. The correlation and
measurement of terrace elevations is accomplished largelywith the ver-
tical elevation data embodied in the Lidar data (Fig. 1C). Higher terrace
surfaces are interpreted to be relatively older than those lower. The deg-
radation of terrace surface morphology with time is manifested in the
smooth surfaces of the higher Q5 and Q6 surfaces observed in the field
and Lidar (Fig. 1C) in contrast to well preserved bar and swale topogra-
phy that remains along reaches of the lower Q1 andQ2 surfaces. Old ae-
rial photographs (AMS, 1956) aid in the correlation of terrace surfaces
where urbanization has significantly altered the landscape before the
more recently collected Lidar.

Terrace elevations and heights above the active channel obtained
from Lidar are plotted as a function of distance along the Truckee in
Fig. 4. Individual measurements for consistency and reproducibility
are taken primarily along abandoned terrace riser crests at points
where they are closest and strike close to parallel to the modern
Truckee (location and values of individual measurements are recorded in
supplemental Table S1).

The scatter in values for each terrace level is largely an artifact of
geologic processes ranging from stream incision occurring obliquely to
sloping abandoned terrace surfaces and burial by subsequent fan forma-
tion or colluviation (Supplemental Materials Fig. S1). Fig. 4 shows six
sets of fluvial terraces when grouped according to elevation. The gradi-
ents of abandoned terraces generally follow the modern grade of the
Truckee, with the exception of youngest terraces Q1 and Q2 near their
eastern limit beyond kilometer ~36 where they deviate downward to
merge with the current grade of the Truckee. Higher and older aban-
doned surfaces are not present downstream of kilometer 36.

The broad smooth slopes of the Q6p pediment surfaces grade to ter-
race Q6 and are preserved at kilometers 15, 25, and 30 along the Truckee
(Figs. 1C and 5). The highest preserved and mapped surfaces are the Q6p
fan pediments that grade to the Q6 terrace surface at kilometers 15, 25,
and30along Truckee (Fig. 5). Each shares similar uniquely broad expanses



Fig. 4. Terraces along the Truckee. (A) Terrace elevations with distance. (B) Terrace heights above modern stream grade with range and average values tabulated at right for each terrace.
Filled arrows are location of check dams on the Truckee. Terrace levels in (B) are locally reduced in vicinity of dams becausemeasurements aremadewith respect towater level recorded in
Lidar. Open arrows delineate ~90° bend in course of the Truckee that appears spatially associatedwith a change in grade of the Truckee. Distance along the Truckeemeasured from arbitrary
point upstream. Measurements on opposite sides of the Truckee are labeled with n and s in the key, respectively. Measurement locations and values archived in Supplemental Materials
Table S1. Geologic processes that lead to scatter in plots are described in Supplemental Materials Fig. S1.
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of like geomorphic expression and similar elevation. Themeasured eleva-
tions of the Q6 surfaces are ~110 m upstream Verdi (kilometer 15)
and Chalk Bluff (kilometer 30) and a higher ~125 m east of Belli
Ranch (kilometer 25) (Fig. 5). The higher elevation measurement at
Belli Ranch is somewhat of a puzzle. It may be considered that the Q6p
and Q6 surfaces east of Belli Ranch records a relatively older and higher
stage of the Truckee than preserved at Chalk Bluff and east of Belli
Ranch. Alternately, the higher elevation may be an artifact of measuring
the elevation of an eroded edge of a downward sloping surface. Notwith-
standing this uncertainty, the terraces at the three sites are here viewed to
be approximately correlative and chronicle a period of bedrock incision
on the order of ~110 m since the Truckee flowed on the Q6 surface.
3. Dating of terrace surfaces

Application of TCN surface exposure datingmethods to boulders and
a profile of samples taken from a sediment pit provide a measure of the
age of four of the six terrace surfaces. The premise and application of
TCN is summarized in Gosse and Phillips (2001) and Anderson et al.
(1996). Sample collection and analysis methods used here are detailed
in Angster et al. (2019). In brief, samples collected are from smooth
terrace surfaces exhibiting no significant erosion (gullying) and
interpreted to have been stable since formation (Figs. 1C, D and S5).
Each sample analyzed is derived from quartz-rich granitic rocks and
estimates of ages are based on the accumulation of the 10Be TCN.



Fig. 5. Elevation measurements and observed relationship between Q6p pediment and Q6 fluvial surfaces illustrated with images (left) and profiles (right) for three locations where
preserved along the Truckee. Black lines on small insets at right show location of profiles on hillshade images. Both images and profiles are constructed with Lidar digital elevation
data. Location of sites are at kilometers 15, 25, and 30 along the course of the Truckee (Fig. 1C). The horizontal tonal contrasts between the Q6 and Q6p markers in ‘a’ are vegetation
and not elevational contrasts.
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Boulder samples taken from the terrace surfaces are generally the
largest and apparently least weathered on the respective surfaces.
Nonetheless, boulders collected on the oldest mapped surfaces typically
exhibit oxidation andmineralweathering thatmay have removed outer
boulder layers since the time of deposition. The reduction in the amount
of 10Be that accompanies the weathering leads to estimation of expo-
sure ages that are minimum estimates of the age of the surface on
which the boulders rest (Gosse and Phillips, 2001).

Correcting 10Be TCN ages for weathering that occurs on boulder
surfaces is inexact. Small et al. (1997) reports summit surfaces in the
Sierra Nevada of ~3±2 m/Ma, and if we take a range of 1 to 5 m/Ma,
this would result in calculated ages of 10 ka being an underestimate of
the true age by ~1 to 5%, an age of 50 ka by ~4 to 24%, and an age of
100 ka by ~10 to 50%. No independent measures of weathering rates
exist in our study area and it is not certain that erosion rates on the sum-
mit are equivalent to rates in the study area. We present boulder ages
presuming no erosion. The uncertain amount of correction that should
be applied does limit though not obviate the general interpretations to
be put forth here. Locations of sample sites are shown in Fig. 1D and fur-
ther documented with waypoint information and photographs in sup-
plement Table S2 and Fig. S2.

The resulting average 10Be exposure ages range from ~29 to ~347 ka
(Fig. 6A). Waypoints of individual boulder sample locations, chemistry
of samples, and exposure age determinations are summarized in



Fig. 6. Be-10 TCN surface exposure ages. (A) Ages plotted and grouped by colour according to surface sampled (e.g., Q1, Q2… Q6). Uncertainty bars on ages are 1 σ external uncertainties
output by theCRONUS-Earth online calculator for boulder samples on theQ1, Q2, andQ5 surfaces, smaller than diameter of plot symbolwhere not present. Uncertainty bars for theQ6data
point reflect the 2 σ bounds on the age is determined with application of the Monte Carlo profile simulator of Hidy et al. (2010) that serves to provide a Bayesian best fit profile to the
observed profile of 10Be with depth at Chalk Bluff. Average age and 1 σ (ka) of samples from respective surfaces are annotated and spanned by the transparent colored rectangles. The
stacked benthic δ18O records of Lisiecki and Raymo (2005) highlight the last six glacial-interglacial cycles (glacial periods are shown by grey bands). Tahoe and Tioga glacial stages men-
tioned in text are labeled and highlighted in dark blue. (B) Average elevation difference (between terrace surfaces and the active stream channel) as function of average age assessed for
each terrace surface. Value of incision obtained by dividing average elevation differences by average age for each dated surface is annotated. The youngest two samples on Q5 surface are
not included in estimates of average age.
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Table 1.We here use the Lifton et al. (2014) scalingmodels to define 10Be
ages for the terraces and also provide ages using other scaling models in
Table 1. Ages assessed with other scale models may vary up to ~9%
(Table 1). In the absence of any surface boulders, the Q6 Chalk Bluff sam-
ple age is determined from a depth profile of 10Be samples (Fig. 7). In this
case, the age is determined with application of the Hidy et al. (2010) cal-
culator, a Monte Carlo simulator that serves to provide a Bayesian best fit
profile to the observedprofile of 10Bewithdepth, and the uncertainty bars
for the data point in Fig. 6A reflect the 2 σ bounds on the calculator's best
exposure age estimate. Chemistry measurements for the Chalk Bluff pro-
file and attendant input and output values of the Hidy et al. (2010)
calculator are detailed in Supplement Table S3.

The averages of ages on each surface are annotated in Fig. 6A. Samples
VT1 and VT2 are not included in the averages. These samples have
unreasonably young ages (>3 σ beyond the mean of the population),
which might be attributed to erosional processes such as fire spalling or
perhaps uprooting and soil disturbance that accompanies the falling of
trees (Bierman and Gillespie, 1991; Dorn, 2003; Kendrick et al., 2016).
Given the likelihood of surface erosion or fire spalling, it may reasonably
be suggested that the oldest surface samples are more closely representa-
tive of the actual ages of thedated terrace surfaces. Albeit coupledwith sig-
nificant scatter in the individual ages and overlap between surfaces, the
average exposure ages or themaximumsample age determined on the re-
spective surfaces increase in a manner consistent with the relative geo-
morphic positions of the sampled Q1, Q2, Q5, and Q6 terrace surfaces.
Descriptions and textural analyses of soil profiles may serve as a compli-
mentary internal consistency check on TCN ages and are provided in Sup-
plemental Materials Fig. S5 for sites on the older Q5 and Q6 surfaces.
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Fig. 7.Graphical output of theHidy et al. (2010) depth profile simulator for Chalk Bluff profile. Left: Plot of themeasured 10Be concentration as a function of depth. The red bandbounds 2σ
profile solution space. Right: Probability density functions for estimates of the age, erosion rate, and inheritance that yield 2σ profile solution space. Ranges of erosion rate and inheritance
provided to the calculator are not well known, which adds an unquantified degree of uncertainty to the results. Details of chemistry and input and output to simulator are in
Supplementary Materials Table S3.
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4. Geomorphic evolution

Viewed toward the south, the sequence of sketches in Fig. 8 illustrates
the history of incision and terrace formation since the Q6p pediment
surface graded to the Q6 fluvial terrace. The floodplain of the Truckee
during Q6 time appears to have been substantially broader than today.
Taking the average exposure ages to be representative of the approximate
time of terrace abandonment, a period of incision dropping the Truckee ~
25 m interrupted the period of Q6p pediment development at ~350 ka
leading to abandonment of the Q6 surface. Stability of the Truckee again
ensued until a subsequent period of incision at ~250 ka lowered the
Truckee an additional ~25m to abandon theQ5 surface. This same process
in conjunction with hillside erosion repeated an additional four times in
producing the Q4 through Q1 surfaces and today's distribution of aban-
doned terrace remnants. The evolution is thus one of alternating periods
of incision and lateral planation and an apparent narrowing of the Truckee
floodplain over the last ~350 ka.

5. Cause of incision

Each of the abandoned surfaces exhibit strath deposits resting on
Hunter Creek Sandstonebedrock. Bedrock incision is generally considered
to occur in response to a lowering of the relative base level towhich rivers
onnowelevated terrainflow,with rates of incisionmodulated by changes
in sediment supply and transport capacity. Climatic processes, processes
of stream capture or diversion, and tectonics may result in changes in
base level. The base level to which the Truckee flows today is Pyramid
Lake (elevation of ~1160 m above sea level), a remnant of pluvial Lake
Lahontan (Fig. 1A, B) that filled to ~1330 m about 15 ka (e.g., Adams
and Wesnousky, 1999). The record of progressive incision recorded by
the Truckee terraces spans a much longer period (~350 ka or more), and
the ages of individual dated surfaces are all >15ka, thusmaking it difficult
to attribute terrace formation to the desiccation of a climatically induced
higher Pyramid Lake at ~15 ka. It is also problematic to interpret that the
grade of the Truckee recorded by the Q6 terrace remnants that are now
~110 m higher extended continuously eastward across the Reno basin.
At this elevation there is no other clear path to Pyramid Lake that main-
tains a downward grade (SupplementalMaterials Fig. S3), nor are reports
of riverine or valley-fill deposits perched upwards of 100 m along the
perimeter of the Reno basin.

Observations pointmore likely to tectonic uplift of the Sierraswith re-
spect to subsidence of the Reno Basin (Fig. 1B) as the cause of base-level
change driving long-term incision along the course of the mapped ter-
races. Well defined east-dipping active Sierra Nevada range-bounding
normal faults are present immediately to the north and south of Reno
(Fig. 1A, B). The pattern of active faults where the Truckee enters the
Reno basin differs, consisting of distributed grabens rather than a single
east-facing normal scarp (Fig. 1D). The distinctive pattern of active faults
was early pointed out by Thompson and White (1964) and deformation
across the rangefront here appears to be primarily the result of distributed
faulting andwarping rather than a single range-bounding fault. The faults
correlate spatially with the presence of a sedimentary basin that reaches
to >1 km depth (Supplemental Materials Fig. S4) inferred from gravity
measurements (Abbott and Louie, 2000). The localized though distrib-
uted nature of faults and warping serves to explain why the eastward
extent of preservation is not the same for all terrace remnants and the ap-
parent downward warping of the youngest Q2 and Q1 surfaces down-
stream of kilometer ~36 (Fig. 4A). Interpreting that terrace elevations
are a result of tectonic uplift, the average rate of incision and relative uplift
of the oldest 350+222/−55 ka age surface that now sits ~110 m above the
Truckee has been ~0.3+0.7/−0.1 mm/a. The value falls within the range of
modal values of uplift rates assessed from the offset of late Pleistocene
moraines by rangefront faults nearby at Woodfords, Buckeye Creek and
Sonora Junction reported by Rood et al. (2011b) (Fig. 1A). The similarity



Fig. 8. Sequential evolution of Truckee River terraces viewed obliquely from the south. Panels are arranged from oldest (A) to youngest (H). Map unit colors follow those in Fig. 1D.
Depiction commences with interpretation that Q6p was largely continuous and graded to the Truckee prior to ~350 ka. Incision and lateral planation and erosion of existing abandoned
terrace remnants occurs during time between panels.
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of gradients of terrace remnants suggests a rather block-like uplift, but for
the warping associated with distributed faulting between kilometers ~36
to 40. (Fig. 4A). Confidence in any assertion that the uplift rates at Reno
have been steady or changed over time of terrace development is com-
promised by the uncertainties in age estimates.

6. Potential record of glaciation

Each of the strath terrace deposits has boulders in dimension
ranging commonly from >2–3 m and up to 12 m dimension, beyond
the smaller <1-m-diameter boulders present along the same reaches of
the present-day Truckee. Birkeland (1968b) interpreted that the terraces
record discharges and flow velocities to have been much greater than
today and that the largest boulders were commonly granite with poten-
tial source areas upstream of the map area, likely the headwaters of the
Truckee. He further suggested that the large boulder deposits were the
result of glacial lake outburst floods (GLOFs) caused by failure of glacial
ice dams that crossed the upper Truckee canyon and temporarily raised
the level of Lake Tahoe. Similarly, Blair (2001) and Benn et al. (2006)
argue for the importance of GLOFs as formative processes in producing
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alluvial fans along the eastern Sierra Nevada in Owens Valley.Whether or
not it is this process that is responsible for all of the strath deposits, the
large size of clasts and the presence of boulders of Sierran granite make
for the reasonable suggestion that each of the strath deposits corresponds
to periods of increased flow and transport that accompany periods of gla-
ciation. In this context, the alternation of periods of lateral beveling versus
vertical incision required to produce the Truckee terrace sequence appear
linked to changes in sediment flux over glacial cycles. Similar linkages of
landform development to major stages of glaciation have also been ob-
served around the globe in the western United States (Bull, 1977; Wells
et al., 1987; Wells et al., 1990; Bull, 1991; Harvey et al., 1999; Bull, 2000;
Blair, 2001), the Tibetan Plateau (Owen et al., 2006; Blothe et al., 2014;
Gao et al., 2016; Wang et al., 2017; Hu et al., 2018), High Atlas Mountains
inMorocco (Arboleya et al., 2008; Pastor et al., 2015), the Indian Himalaya
(Ray and Srivastava, 2010; Dosseto et al., 2018; Shukla et al., 2018),
Khumbu Himal (Barnard et al., 2006), Kyrgyz Then Shan (Burgette et al.,
2017), and the Danube valley of Austria (Ruszkiczay-Rudiger et al.,
2016), and thus give further reason to the idea that terrace development
along the Truckee is related to glacial cycles.

The chronology of Late Pleistocene glaciation in the Sierra Nevada is
formulated primarily on TCN surface exposure dating of moraines
(Phillips et al., 1990; Phillips et al., 1996; James, 2002; Phillips et al.,
2009; Rood et al., 2011a; Wesnousky et al., 2016; Pierce et al., 2017).
The extensive survey of Rood et al. (2011a) along the east flank of the
Sierra Nevada south of about Lake Tahoe places retreat of themaximum
glacial advances at ~19 and ~ 140 ka for the last two glacial cycles.
Moraines along a few singular drainages have been interpreted to
suggest that major advances also occurred between these periods.
Phillips et al. (1996, 2009) date moraines at Chiatovich and Bishop
creeks at ~25–27 ka and two sets of moraines at Little McGee Creek
(Fig. 1A) to ~32 and ~ 50 ka (Fig. 1A). James (2002) interpret two sets
of moraines in Bear Valley to have formed at ~49 and ~ 76 ka. The pos-
sibility exists that the history of glacial advances is not shared along the
length of the Sierra Nevada. Alternatively, end-moraine positions of
major marine oxygen isotope stages (MIS) 2 and 6 glaciations are
about the same and the disparate record of moraines between these
times has reasonably been attributed to their obliteration during
major advances of MIS 2 (Gillespie and Zhefuss, 2004). In this context
of prior studies, the uncertainty and older ages determined for the Q5
and Q6 surfaces preclude unique comparison to earlier glacial times,
while the younger ages of the Q1 and Q2 surfaces might be associated
with ages of moraines recognized elsewhere in the Sierra Nevada.
That said, the current inability to uniquely distinguish between the
ages of the Q1 and Q2 surfaces leaves open the possibility that they do
not correspond to separate major stages of glaciation and processes
other than major glacial cycles have also played a role in formation of
the terraces.

7. Interplay between tectonics, glaciation, and terrace preservation

The number and extent of terraces near Reno is significantly greater
than observed in other drainages that debouch from the eastern flank of
the Sierra Nevada. The observation is ascribed to unique geographic cir-
cumstance. Moraines along the east flank of the Sierra Nevada generally
extend in narrow canyons to a steep normal-faulted rangefront, such
that younger glacial advances may remove older ones on the footwall
and normal fault displacement aids burial of distal moraine and outwash
deposits on the hanging wall. In contrast, the limit of ice and moraine
formation at the headwaters of the Truckee is separated from the locus
of rangefront uplift at Reno by the Truckee Canyon. Glacial outwash
debouches near Verdi and is deposited over a long stretch of the
rangefront footwall. Rangefront uplift thus serves to preserve and sepa-
rate outwash deposits from different periods of time. The resolution of
the terrace record formed in this mannermust be limited to some degree
by the rate of uplift. Uplift will be insufficient to result in preservation of
separate terraces if periods of increased outwash are spaced too closely
in time. Conversely, the distinct separation of terraces along the Verdi-
Reno corridor indicates significant and discrete periods of time between
outwash events.

8. Conclusion

The observations assembled here increase the number of terrace
levels previously recognized along the Truckee, provide initial quantita-
tive bounds on the age of their formation, and introduce tectonic uplift
as an important component in creating and preserving the most exten-
sive suite of fluvial terraces along the eastern flank of the Sierra Nevada.
Specifically, the presence of six terraces and their deposits along a 40-
km-reach of the Truckee records an ~350 ka period of incision and rela-
tive uplift caused by faulting along the Sierra Nevada range front equal
to ~0.3 mm/a. Interpretation that the terrace deposits are glacial out-
wash all or in part caused by glacial outburst floods suggests a direct
linkage of terrace formation to glacial cycles, albeit chronologic data
alone remain at present insufficient to definitively prove the correlation.
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