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Abstract. The historical record of large (M >
6.9) earthquakes and geologically determined
rates of slip on Quaternary faults in intraplate
Japan (Honshu and Shikoku) are used to estimate
the average rate of seismic moment release
(M) for the last 400 years and during the late
Quaternary, respectively., Values of ¥ estimated
from the two data sets are similar in regions
where seismic activity is conceatrated on land,
We interpret this observation to suggest that #
in intraplate Japan has been coanstant during the
late Quaternary and is relatively free from
secular variation when averaged over periods of
several hundreds of years. ¥ in Shikoku may be
attributed almost solely to right-lateral slip of
the median tectonic line (MIL). The easterly
strike of the MIL is consistent with a compres-
sive stress field that trends northwest. Crustal
shortening of the Izu Peninsula taken up on a set
of strike slip faults that show north by north-
west compression is =1 mm/yr. Northeast Honshu
is characterized by a set of reverse-type faults
that trend northerly. Conversion of ¥ in north-
east Japan to strain rates suggests that about 5%
of the relative plate motion between Japan and
the Pacific plate (#9.7 em/yr) is accommodated as
a permanent east-west shortening (%5 mm/yr) of
northeast Honshu. The predominant deformation in
central and western Honshu takes place as slip on
a conjugate system of strike slip faults that
strike northeast and southeast and show right-
lateral and left-lateral motion, respectively.
Crustal shortening, resulting from slip on
faults, in central and western Honshu is 5 and
0.5 mm/yr, respectively, in an easterly direc-
tion. Central and western Honshu are in closest
proximity to the Nankai trough, and hence, the
stress field in these regions cannot simply be
attributed to the accommodation of the relative
(northwesterly) convergence of the Philippine Sea
plate. The northward impingement of the Izu
Peninsula into Honshu may influence stresses in
central and western Japan, but a conclusive
explanation of the stress field in central and
western Honshu remains an enigma.

Introduction
The common occurrence of intraplate seismicity
and mountain belts adjacent to convergent plate
boundaries indicates that a significant portion
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of relative plate motion takes place as a perma-
nent strain of the overriding plate. In this
study, seismicity and Quaternary fault data are
used to quantify the amount of horizontal defor-
mation that results from slip on faults within
the crust of the islands of Honshu and Shikoku,
part of the Japanese island arc system. It is for
this region that by far the most complete set of
data concerning seismicity and Quaternary fault-
ing is available. -

The seismic moment tensor (M) is the most
direct measure of the elastic waves set up by an
earthquake and the deformation resulting from its
occurrence [e.g., Aki, 1966; Aki and Richards,
1980] . For shearing on a fault, the scalar value
of the seismic moment (M,) is nuA, where p is the
shear modulus, u 1is the average slip on the
fault, and A is the fault area. The moment
tensor (M) can be completely described when the
gtrike, dip, and rake of the fault are known in
addition to Mgz. In this study, the seismic
moments of large intraplate earthquakes (M > 6.9)
in Japan are gathered from the literature or, in
the case of historical earthquakes, determined
from intensity data. Kostrov's [1974] formula
relating seismic moment to strain is then used to
calculate the amount of strain that has resulted
from slip during earthquakes over the last 400
years. Similar to earthquakes, active Quaternary
faults with geologically estimated slip rates are
described in terms of their average rate of seis-
mic moment telease aad utilized to determine the
average rates of strain of Japan during the late
Quaternary period. The values obtained for the
different periods of time are then used as the
basis for deciding whether or not the rate of
fault deformation in intraplate Japan has been
constant during the Quaternary period.

Plate Tectonic Setting and Seismicity of Japan

The Japanese island arc is located along the
eastern border of the Eurasian plate and bounded
to the east and south by the Pacifi¢ and
Philippine Sea plates, respectively (Figure 1).
The majority of earthquakes in Japan, including
the largest (M, » 1028 dyne cm), occur along the
Japan treach and the Sagami and Nankai troughs
[e.g., Usami, 1966, 1975]. TFocal mechanisms of
large earthquakes along these features are usual-
ly of the low-angle thrust type and interpreted
to indicate that the Pacific and Philippine Sea
plates are being subducted beneath northeastern
and southwestern Japan, respectively [Fitch and
Scholz, 1971; Kanamori, 1971, 1972; Ando, 1974b,
1975; Abe, 1977; Scholz and Kato, 1978].
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Yamashina et al. [1978] studied shallow seismici-
ty in Japan and other island arcs and defined a
zone extending along the frontal non volcanic
arc, characterized by a very low rate of seismic-
ity, as the 'aseismic belt.' The shallow seis-
micity landward of the aseismic belt is referred
to here as intraplate seismicity and generally
does not extend to depths greater than 15 Im
[e.g., Oike, 1975; Takagi et al., 1977; Watanabe
et al., 1978] (Figure 2). The seismic moments of
the largest intraplate earthquakes are about 1027
dyne cm, an order of magnitude or more less than
seismic moments of the great interplate
earthquakes.

Focal mechanism data have been used to delin-
eate the ambient intraplate stress field in Japan
[e.g., Honda, 1932; Honda and Masatsuka, 1952;
Honda et al., 1956, 1967; Ichikawa, 1970, 1971;
Nishimura, 1973; Yamashina, 1976; Shiono, 1977].
A summary of 44 intraplate events with magnitudes
of about 6.0 and greater is presented in Table 1.
Fault mechanisms of intraplate earthquakes are
usually strike slip or high-angle reverse, and
the distribution of P axes reveals that Honshu
is, 1in general, subject to a regional maximum
compressive stress that trends easterly (Fig-
ure 3). Normal faulting is found in Kyushu,
adjacent to the junction of the Nankai Trough and
Ryukyu Trench. Near the junction of two arc
systems, the state of stress within the earth's
crust generally differs from the regional trend
[Shimazaki et al., 1978]. Hokkaido, like Kyushu,
is also located near the junction of two trenches
(Figure 1). We limit the remainder of this study
to the islands of Honshu and Shikoku, adjacent to
the Japan trench and the Nankai and Sagami
troughs. For convenience, we will refer to this
region as intraplate Japan.

The P axes of intraplate earthquakes in Honshu
are approximately aligned with the relative plate
velocity vector along the Japan trench (Figure
3). This alignment has been interpreted to arise

from the transmission of compressive stress
across the Japan trench [e.g., Ichikawa, 1971;
Shiono, 1977; Nakamura and Uyeda, 1980]. Focal

mechanisms differ between northeast Honshu and
regions to the southwest (Figure 3). Earthquakes
in unortheastern Honshu commonly are high-angle

Deformation of an Island Arc

reverse on planes that strike north. Earthquakes
in ceuntral and western Honshu generally exhibit
strike slip movement of a left- or right-lateral
nature on northwest or northeast striking fault
planes, respectively. The area in and adjacent
to the Izu Peninsula, at the junction of the
Sagami and Nankali troughs, 1is also marked by
strike slip faulting but ian contrast to the re-
mainder of Honshu, the P axes trend to the north.
The Izu Peninsula appears to be a part of the
Philippine Sea plate, and the northerly trend of
P axes in this area is probably a manifestation
of the recent collision of the Izu Peninsula with
Honshu [Matsuda, 1978; Somerville, 1978]. The
seismicity in this region also differs from the
remainder of intraplate Japan in that it is not
landward of a trench.

Quaternary Faulting

The orientation and displacement of Quaternary
faults closely mimics movement observed in recent
earthquakes (Figure 4) [Research Group for Active
Faults of Japan, 1980a, bl. Quaternary faults in
northeastern Honshu are of the reverse type,
strike northerly, and are distributed relatively
uniformly through the region. The concentration
of Quaternary faulting is greatest in central
Honshu. The predominant deformation in central
Honshu takes place as slip on a conjugate system
of strike slip faults that strike northeast and
northwest and show right- and left-lateral
motion, respectively. This same motion of fault-
ing is also seen in western Honshu, where the
density of faulting is much less. Faults in the

Izu Peninsula region are also strike slip but are
consistent with a compressive stress that trends
[Somerville,

north to northwest 1978]. Hence,
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Fig. 2. Focal depth distribution of microearth-
quakes projected omn an east-west cross section

(adapted from Hasegawa et al. [1978]). Seismic-
ity from 38°-39°N is plotted. Arrow indicates
approximate location of the ‘'aseismic belt'

[Yamashina et al., 1978]. Triangle and reverse
triangle represent positions of volcanic front
and Japan trench, respectively. Location of
Japanese Islands is delineated by horizontal line
above cross section. Intraplate seismicity is
located in upper 15 km of crust, west of the
aseismic belt. The figure has a vertical exag-
geration of 2.
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intraplate deformation in Honshu takes place as
slip on a network of faults that accommodate a
regional compressive stress field that trends
east except for the Izu Peninsula, where maximum
horizontal stress is oriented north to northwest.

Strain release in Shikoku occurs by slip along
the median tectonic line (MTL), a major right-
lateral fault that strikes easterly, across the
northern coast of Shikoku and parallel to the
Nankai trough (Figure 3). The orientation and
slip of the MIL is consistent with a compressive
stress that trends northwest, in contrast to an
easterly maximum compression in Honshu. In sum-—
mary, geologic and seismologic data may be used
to divide intraplate Japan into five regions of
distinct tectonic style: (1) northeast Honshu,
(2) central Honshu, (3) western Honshu,
(4) Shikoku, and (5) the 1Izu Peninsula and
adjacent environs (Figure 5).

The Seismic Moment Tensor

The seismic moment tensor for a hypothetical
shear dislocation at a point may be expressed as

M= M,(bjn; + bjn;) 1€))

where My is the scalar value of the moment and b
and n are unit vectors in the direction of slip
and normal to the fault plane, respectively. The
P, T, and B axes of focal mechanism solutions
correspond to the principal axes of the wmoment
teasor [e.g., Aki and Richards, 1980]. Brune
[1968] showed that the slip rate along a fault
may be expressed in terms of the seismic moment
as

. 1
a oST ( Mo)

where U is the average slip rate, u shear
modulus, S surface area of fault plane, T time
period over which seismicity occurred, and IM,
the cumulative sum of moments of all earthquakes
occurring on the fault area S over time T.

Brune [1968] and Davies and Brune [1971] used
(2) to calculate average slip rates along major
plate boundaries, using a record of seismicity
extending back as little as 50 years. Their
ability to do this was contingent on the high
slip rates (cm/yr) and short recurrence times
(tens to hundreds of years) of large earthquakes
along given segments of plate boundaries. The
style of seismicity within intraplate Japan is
distinctively different. Slip rates along given
faults are less (mm/yr), recurrence times greater
(several hundreds to thousands of years), and
seismic energy release is not concentrated along
one fault but rather is divided among a large
network of faults (Figures 4 and 5). Hence, in a
region like this it is not appropriate to consid-
er only a single fault. It is more suitable to
measure the total deformation resulting from the
movements on all faults in the area. Kostrov
[1974] expanded the method proposed by Brune
[1968] to determine the average strain of a re-
gion where seismicity is distributed uniformly in
a volume rather than restricted to a given fault.
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The mean rate of strain (é) of a seismogenic
volume (V) resulting from earthquake dislocations
is proportional to the sum of the seismic moment
tensors (IM) of all earthquakes occurring in the
volume (V) per unit time (T) [Kostrov, 1974]:

1
2uVT

¥ = ($570) (3)

Cumulative offsets on geologic faults may be as-
sumed as the sum of displacements resulting from
many earthquakes. Hence, the average rate of
slip of a geologic fault may be used to estimate
the average rate of moment release of the fault.
We use formula (3) plus seismicity and Quaternary
fault data to analyze crustal deformation in
intraplate Japan.

Deformation Rates From Seismicity Data
Data

In this work, data for earthquakes prior to
1885 are from the 'Descriptive Catalogue of
Disastrous Earthquakes in Japan' [Usami, 1975].
Data from Utsu's [1979] catalogue is used for the
period 1885-1925. Magnitudes and epicentral data
for events after 1925 are acquired from the
Supplementary Seismological Bulletin of the Japan
Meteorological Agency (JMA) [1958, 1966, 1968]
(and monthly bulletins thereafter). Magnitudes
in each catalogue are scaled to conform with the
definition of surface wave magnitude proposed by
Gutenberg and Richter [1954].

Most of the cumulative deformation resulting
from seismicity occurs duriag the largest earth-
quakes [Brune, 1968]. We thus limit our concern
to large earthquakes, defined here as those
events with magnitudes greater than or equal to
6.9 (or My » 1025 dyne cm). A plot of large
intraplate earthquakes versus time for the last
400 years shows that the frequency of occurrence
of large events has been higher for the period
since 1880 than for the prior 300 years (Figure
6c). The greater frequency of events observed
for the last 100 years reflects the initiation of
both instrumental recording [Kikuchi, 1904] in
1880 and the systematic collection of felt
reports by the Central Meteorological Observatory
in 1884 [Usami and Hamamatsu, 1967]. Prior to
this time, even though since the commencement of
the 17th century it has been 'the rule of the
government to have each feudal chief send in a
detailed report of damage caused in his dominion
by an earthquake or other natural events' [Omori,
1899], it appears that a number of even the large
events may be missing from the historical record.
The spatial distribution of seismicity discloses
those areas that are deforming most intensely.
It is thus important to investigate whether data
possibly missing from the earlier period (1581-
1880) may account for any spatial distortion in
the observed pattern of seismicity.

The epicentral distributions of large earth-
quakes during the periods 1581-1880 and 1881-1980
are compared in Figure 5. Two major differences
are immediately evident in the pattern of seis-
micity in the two periods. The first is the
absence of seismicity on the Izu Peninsula during
the earlier period as compared to the occurrence
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Fig. 3. P axes of intraplate earthquakes with magnitudes of about 6.0 and greater.
Epicenters of strike slip and reverse-type faults are denoted by open and solid
circles, respectively. The horizontal projection of P axes are shown by lines through
epicenter symbols. Numbers adjacent to earthquake symbols correspond to the list of
earthquake data for each event presented in Table 1. Events 38 and 39 were normal
faults, and the T axes are represented by outward pointing arrows. The Nankai Trough
(N.T.), Japan Trench (J.T.), Sagami Trough (S.T.), and Izu-Bonin Trench (I-B.T.) are
shown schematically. Relative plate velocities (cm/yr) calculated from Seno [1977]
are shown by large hollow arrows. The median tectonic line (MTL) has right-lateral
offset (half-sided arrows) and is shown as a solid and dashed line where it has and
has not, respectively, been active during the Quaternary.

of three large events there in the last 100
years. The Izu region has been populated for at
least the last 400 vyears. Furthermore, large
earthquakes in the Izu region produce shaking of
JMA intensity IV as far away as Tokyo, a cultural
center for well over 400 years. Hence, the
quiescence of the earlier 300-year period appears
to be real and not a consequence of an inadequate
historical record. The other major contrast is
the occurrence of a number of earthquakes ad ja-

cent to the Bungo Channel area in the earlier 300
years in contrast to none during the more recent
period. This was previously noted by Shimazaki
[1976]. He concluded, on the basis of the
historical development of Japanese civilization,
that this must represent true secular variation
of seismicity and is probably not a consequence
of the population distribution. Aside from these
minor differences, this comparison of seismicity
patterns suggests that any data missing from the

/4
2

Fig. 4.

are represented as thick stippled lines.
Group for Active Faults of Japan [1980a, bl).

Distribution of active intraplate faults in Japan.
seismic reflection surveys are denoted by thinner lines.

Faults mapped by marine
Ad jaceat plate boundaries
(Data are adapted directly from Research
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INTRAPLATE EARTHQUAKES IN JAPAN
OF M>69 (188! - 1980)
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Fig. 5. Intraplate earthquakes in Japan (excluding Hokkaido) of M > 6.9 during the
period 1881-1980 (Figure 5a) and 1581-1880 (Figure 5b). The radius of the epicenter
symbols is proportional to the magnitude of the event. Numbers next to solid symbols
in Figures 5a and 5b correspond to Tables 2 and 3, respectively. Numbers adjacent to
open symbols in Figure 5a correspond to Table 3. Schematic plate boundaries are given
and labeled as in Figure 3. Dashed lines are used to delineate the intraplate regions
of Japan. Intraplate Japan is interpreted to be the area northwest of line ABRCDE. FC
divides northeast Japan from central Honshu. GD divides central Honshu from western
Honshu. AB marks the aseismic front which generally parallels the eastern boundary of
the aseismic belt [Yoshii, 1975; Yamashina et al., 1978]. The Izu Peninsula region
south of BC is characterized by northward compressional tectonics reflecting the re-
cent collision of the Izu Peninsyla with Japan in the early Quaternary [Matsuda, 1978;
Somerville, 1978]. CDE represents the landward extent of the nascent Wadati-Benioff
zone of the Philippine Sea plate [Shiono, 1974]. The region south of ABCDE reflects
plate subduction and collisional processes.

6835



6836

Wesnousky et al.: Deformation of an Island Arc
= W f
?0_0: INTRAPLATE JAPAN A 0.0
@ 5.0] [ 5.0
< L
b
0n° L
N 1
Q 2.01 \ ! - 2.0
- Voo
o 1.0 L ) \ d L 10
[ N7 \k A / F
v d v<d Bo-d C
5 . ¥ L 5
we-o- | 1
S ‘ ! e
| ]
z ! : | i ! Ll
z [ | i i I | il
© 7.04 1 1 1 le | | IT
L r ety piey .
= 2 il IA NN RN
1600 1700 1800 1900 1980
10.04 100
507 C 5.0
£ A R
¢ N
£.20- L 2.0
no
%o
S 03 - 1.0
o= o
5 Y
8.0
w
Q
pue )
L
: I
© 7.0 )
: LL Lttt flfie
1600 1700 1800 1960 1980
1003 CENTRAL JAPAN 100
15] 50
T
1
2204-------~ 20
33
21,04 10
S ] ‘
L] N \
B-g: T '|l ! K]
'é" : 1 \ \B--o--o-ac! I '
- ' | ! i o
- ]
z I H | I ! | ! iI
© 7.04 I 1 I ! ' | | |T' '
< P 1 I H ! g
s o 1 | i l 1o a
Ll ] . H .' 1 L .
1600 1700 1800 1900 1980
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GIFU EQ. 1969 N
Rpg=TOKm /

RIKU-U EQ. 1896
Rpg=240Km
Ry= 60 Km

Fig. 7.
this study.

of the circle used to approximate the area of intensity is given.

differs for each map.

historical record do not introduce any spatial
distortion into the observed pattern of
seismicity.

Seismic Moment of Historical Earthquakes

It is necessary to have a quantitative measure
of both the moment (M,) and appropriate focal
mechanism for each intraplate earthquake in order
to establish the resulting permanent strain
deformation. The moment tensors (M) of virtually
all large earthquakes for the last 100 years have
been determined with detailed study of instrumen-
tal, geodetic, and geologic data (Table 2). We
use information obtained from the areal distribu-
tion of seismic intensity, focal mechanisms of
recent earthquakes, and observation of Quaternary
geologic patterns to estimate the moment tensor
of the remaining (historical) large earthquakes
that occurred during the last 400 years.

Previous investigations have demonstrated a

Deformation of an Island Arc

S. 1ZU EQ. 1934

TOTTOR| EQ. 1943
Ryg* (B0 Km
Ry? 60Km
Ryg= 20 Km

Maps of JMA intensity from Usami [1975] for four of the earthquakes used in
Source parameters of these earthquakes are listed in Table 2.

The radius
Note that the scale

strong correlation between the areal distribution
of modified Mercalli (MM) inteasity VI and seis-
mic woment (M,) [Hanks et al., 1975; Herrmann et
al., 1978]. 1In Japan, seismic intensity is gen-
erally described with the Japan Meteorological
Agency's (JMA) intensity scale. The JMA scale
consists of only eight grades of intensity [see
Usami, 1966] as compared to the 12 of the MM
scale [Richter, 1958]. JMA IV is approximately
equivalent to MM VI [Trifunac and Brady, 1975].
JMA intensity maps are available for all but one
of the earthquakes in Table 2 [Usami, 1975;
Kayano and Sato, 1974; Murai, 1977; Murai et al.,
1978]. For each of these events, the areal dis-
tribution of JMA IV, V, and VI, as approximated
by a circle around the epicentral area (Figure
7), is compared to the event's M,. Figure 8a
shows a linear relationship between log (M,) and
log (Area) of intensity IV over 4 orders of
magnitude in My. All but two of the points plot
within a factor of 3.5 of the value of moment
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versus areal distribution (101% cm2?) of JMA in-
tensity IV (Figure 8a), JMA intensity V (Figure
8b), and JMA intensity VI (Figure 8c) for iatra-
plate earthquakes in Japan. Open, solid, and
half-filled symbols represent earthquakes located
in the central, northeast, and Izu regions of
intraplate Honshu, respectively. Numbers adja-
cent to data points correspond to Table 2.
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seismic moment of historical earthquakes in Japan
(solid circles). The empirical relations between

areal distribution of intensity and moment,
established in Figure 8, were used to determine
the moments of the historical earthquakes.

Values of moment were determined from areal dis-
tribution of intensity IV except where noted.
The open circles are reestimates of magnitude by
Usami [1975], based on intensity data not avail-
able to Kawasumi [1951].

predicted by the relation plotted in Figure 8a.
A similar relation results for intensities V and

VI, although not as many data are available and
the scatter is greater (Figures 8b and 8¢). The
empirical relation in Figure 8a 1is used to

determine the M, of historical earthquakes with
published isoseismal maps by obtaining the areal
distribution of intensity IV. Isoseismals of JMA
intensity V and VI (Figures 8b and 8c) are used
only when data from JMA IV are not avaiable.
Sufficient data are not available to formulate
isoseismal maps for all of the historical earth-
quakes. Magnitudes of these events, however,
have been estimated by Kawasumi [1951] from what
seismic intensity data are available. He esti-
mated magnitudes based on his estimate of the
seismic intensity at a distance of 100 km from
the epicenter. Since the areal distribution of
intensity is seen to be a function of seismic
moment, it is reasonable to assume that the
values of magnitude provided by Kawasumi [1951]
should also be proportional to M,. The magni-

tudes of large historical earthquakes given by
Kawasumi [1951] are compared to their seismic
moments in Figure 9, when the latter may be

determined with the relations in Figure 8. A
simple empirical relation between the two is
shown and is used to estimate the moment of large
historical earthquakes for which isoseismal maps
are not available.

Recent seismicity data and Quaternary geologic
data may be used to estimate the focal mechanisms
of the historical earthquakes for which no in-
strumental data are available. The stress system
reflected by recent focal mechanisms (Figure 3)
and the map of active faults of Japan (Figure 4)
has been operative since the beginning of the
Quaternary [Research  Group for Quaternary
Tectonic Map, 1973]. Hence, we assume that
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earthquakes during the last 400 years in uorth-
east Japan were of reverse type, similar to the
Niigata earthquake of 1964, and those in central
and western Japan were of a strike slip nature,
similar to the Nobi earthquake of 1891. A
general focal mechanism need not be assumed in
Shikoku because there is no historical record of
large intraplate earthquakes during the last 400
years (see Figure 5). Similarly, the only known
large events in the Izu Peninsula occurred
recently and their source mechanisms have been
studied in detail (Table 2). The moment (M),
date, and epicentral data of all historical
intraplate earthquakes of M > 6.9 are presented
in Table 3.

Rates of Moment Release and Crustal Shortening
From Seismicity Data

We treat the Izu Peninsula, and the northeast,
central, and western regions of Honshu separately
because of their distinct tectonic styles. The
areal dimensions of the deforming volume in each
intraplate region (Figure 10a) are chosen as
follows: VWNortheast Honshu: 575 km north-south
and 190 km east-west; central Japan: 225 km
north-south and 255 km east-west; western Honshu:
125 ktm north-south and 340 km east-west; Izu
Peninsula: 75 km north-south and 35 km east-
west. The thickness of the seismogenic volume is
placed at 15 km. For each region, the moment
tensor (M) of all large earthquakes (Tables 2 and
3) are rotated to a north-east-vertical reference
frame and summed to obtain IM. The strain rate
(%) of each region is found by substituting IM
into equation (3). We consider only strains in
the horizontal and vertical directions. An esti-
mate of the rate of permanent crustal shortening
(or extension) is also computed by multiplying
rates of the maximum horizontal strain times the
distance across the deforming area in the respec-
tive directions of maximum strain. Computations
are performed with both the recent 100-year and
complete 400-year records of seismicity. The
results are summarized in Table 4 and discussed
below. Rates of horizontal deformation obtained
from the 400-year history of seismicity are also
shown in Figure lla.

The principal direction of shortening in cen-
tral Japan is about 95° east of north. M, com-
puted from the 400-year record of seismicity is
2.1 x 1025 dyne cm/yr. Rates of maximum hori-
zontal compressive strain and crustal shortening,
calculated from the 400-year data set are
2.6 x 107" /yr and 6.7 mm/yr, respectively. The
release of seismic moment occurs as discrete
units during earthquakes. If the average values
determined above are to be considered represeata-
tive of secular rates, it is important that the
time period sampled be of sufficient length. 1In
Figure 6a the historical record of large earth-
quakes in central Japan is plotted bemeath 50-
and 200-year running averages of M,. The large
variation in values of M, in the 50-year curve
clearly shows that a 50-year sample does not
provide an accurate estimate of the long-term
average of ﬁo. The 200-year curve, in contrast,
is much flatter and values of M, are generally
limited between 1 to 2 x 1025 dyne cm/yr. This
suggests that the 400-year record of seismicity
provides a sufficient time window for assessment

Deformation of an Island Arc

of secular rates of moment release and crustal
shortening.

Crustal shortening in northeast Japan is
maximum in a direction about 100° east of north
(Figure 1la). M, averaged over the last 400
years, is 3.2 x 1025 dyne cm/yr (Table 4). The
maximum rate of horizontal compressive strain and
equivalent crustal shortening computed with the
400-year average of are 2.7 x 10"8/yr and
5.3 mm/yr, respectively (Figure lla). Similar to
central Japan, the 50-year running average of ﬁo
shows large excursions from the 400-year average
of M, (Figure 6b). 1In contrast to central Japan,
the 200-year running average of M, is not flat in
character but rather shows greater variation,
ranging from 0.7 to 5 x 1025 dyne cm/yr as more
recent time periods are sampled. Hence, 200
years appears to be too short a time period to
estimate accurately secular My in northeast
Japan. The Niigata earthquake of 1964 (M, =
3.2 x 1027 dyne cm) accounts for about 25% of the
total moment release in northeast Japan during
the last 400 years. Though a 200-year period
appears insufficient, hypothetical addition or
deletion of a Niigata-type earthquake to the
historical record alters the 400-year average of
M, by only 25%. This lends confidence to the
hypothesis that the 400-year average of M, is
repregsentative of long-term rates.

Only two intraplate earthquakes are histori-
cally recorded in western Honshu (Figure 5). The
net moment release of these two earthquakes when
averaged over the last 400 years indicates M,
equal to 3.4 x 102% dyne cm/yr. Rates of
horizontal strain and crustal shortening calcu-
lated from these data are maxjimm in an easterly
direction and equal 0.6 x 10'8/yr and 2.0 wm/yr,
respectively. Estimates of secular M, in a re-
gion of such low seismic activity are susceptible
to large error. Hence, the above rates of strain
and strain shortening cannot with any confidence
be considered representative of secular deforma-
tion rates.

Shikoku has been aseismic during historic time
except for a group of earthquakes located in the
vicinity of the Bungo Channel (Figure 5). Recent
smaller earthquakes in this region are commonly
located relatively deep (40-60 Im), show normal
faulting, and have been interpreted to reflect
complex interplate processes associated with the
leading edge of the subducting Philippine Sea
plate [Shiono and Mikumo, 1975]. The large his-
torical earthquakes located in the Bungo Channel
region are not asssociated with any evidence of
surface faulting and very likely were situated at
depth. Hence, there is no evidence of intraplate
type seismicity in Shikoku during the last 400
years.

Three large earthquakes have occurred in the
Izu Peninsula this century: The North Izu event
(M = 7.0) of 1930, the Izu-Hanto-Oki shock (M =
6.9) of 1974, and the Izu-Oshima (M = 6.8) earth-
quake of 1978. The only large historical earth-
quake to be confidently 1located on the Izu
Peninsula is believed to have occurred on the
Tanna fault in 841 A.D. [Usami, 1966; Somerville,
1978]. The Tanna fault exhibited surface
breakage during the 1930 North Izu earthquake.
This suggests a 1000-year recurrence time for
earthquakes of about M = 7 on the Tanna fault
[Somerville, 1978]. Data from recent excavations
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TABLE 3. Intraplate Earthquakes, 1580 to Present, of Magnitude Greater Than
or Equal to 6.9 for Which Instrumentally Determined Source Paramerers are Not
Available.

Epicentral Data

Latitude Longitude Moment*,
No. T Date °N °E Magnitude 1026 dyne cm
Northeast Japan: 1581-1880 *
85 Sept. 27, 1611 37.5 139.7 6.9 1.4*
102 Oct. 18, 1644 39.4 140.1 6.9 1.4*
134 Jan., 18, 1683 36.75 139.65 7.3 4.8
144 June 19, 1694 40.2 140.2 7.0 1.9*
172 Aug. 1, 1729 37.6 137.6 6.9 1.4*
182 May 14, 1746 37) (140) 6.9 1.4,
195 March 8, 1766 49.3 140.6 6.9 1.4*
216 Feb. 8, 1793 40.85 139.95 6.9 1.4
223 July 10, 1804 39.05 139.95 7.1 2.6
235 Dec. 18, 1828 37.6 138.9 6.9 3.6 (VI)
239 Dec. 7, 1833 38.9 139.15 7.4 32.0
248 May 8, 1847 36.7 138.2 7.4 6.5 (VI)
Northeast Japan: 1881-1980 sum = 59.8
311 Oct. 22, 1894 38.9 139.9 7.0 3.3 (1V)
338 May 12, 1900 38.7 141.1 7.0 6.9 (1v)
398 March 15, 1914 39.5 140.4 7.1 4.1 (IV)
494 May 1, 1939 40.0 139.8 7.0 1.3 (1Iv)
sum = 15.6
Central Japan: 1581-1880
78 Jan. 18, 1586 36.0 136.8 8.1 19.0 (V1)
82 Sept. 5, 1596 34.85 135.75 7.25 6.3 (VI)
115 June 16, 1662 35.25 136.0 7.8 15.0 (VI)
229 Aug. 2, 1819 36.2 136.3 7.4 1.3 (V)
254 July 9, 1854 34.75 136.0 7.6 8.5 (VI)
269 April 9, 1858 36.2 136.3 6.9 7.6 (VI)
sum = 57,7
- West Honshu: 1581-1880 -
81 . Sept. 4, 1596 33.3 131.7 6.9 1.4
140 . Jan. 4, 1686 34.1 132.3 7.0 8.7*(V)
225 "% Apr 21, 1812 33.3 132.5 6.9 1.4*
259 " Dec. 26, 1854 33.4 132.1 7.0 1.9*
266 Oct. 12, 1857 33.9 132.7 6.9 1.4
282 March 14, 1872 34.9 132.0 7.4 10.0 (VI)
sum = 24.8
sun (minus Bungo Channel events) = 10.0
"k West Honshu: 1881-1980
358 June 2, 1905 34.2 132.3 6.9 5.3 (1v)
sm = 5.3
sum (minus Bungo Channel events) = 0.0

*The relation between magnitude (Mkw) and moment (Mo) in Figure 9 was used
to determine the seismic moment.

Number of each event corresponds to that listed in Usami's [1975] cata-
logue. The WNovember 25, 1614 earthquake (M=7.7, 1lat=37.5N, long=138.1E)
listed in Usami [1975] is not included because Hagiwara et al. [1980] re-
examined the historical data and found that the event is probably much smaller
with M=6.3.

Seismic moment is determined from the areal distribution of JMA Intensity
with the relations shown in Figure 8 except for those values denoted by a
single asterisk. The scale of intensity used is given in parentheses. We
agsume on the basis of similar intensity patterns that Event Wo. 239 produced
the same seismic moment as the June 16, 1964 Niigata earthquake [see Hatori
and Katayama, 1977].

Events located in or near the Bungo Channel.
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Fig. 10.
central Japan (CJ),
environs (IZU).

(a) Index map of regions discussed in this study:
western Honshu (WH),
(b) Number is index location of maps referred to in Table 5 and the

A

northeast Japan (NE),

Shikoku (SH), Izu Peninsula and adjacent

active faults book [Research Group for Active Faults of Japan, 1980a, b].

across the Tanna fault are in accord with this
estimate [Matsuda et al., 1981]. If we assume a
1000-year recurreace time for each of the three
earthquakes that occurred on the peninsula during
this century, calculations produce an average
moment release rate of 4.4 x 1023 dyne cm/yr.
Converting ¥ to rates of strain indicates that
the Izu Peninsula is shortening in a northwest-
erly direction at rates of 1.3 mm/yr, equivalent

to a horizontal compressive strain rate of

1.4 x 10~8/yr.
Deformation Rates From Quaternary Fault Data

Data and Assumptions

The recent publication of 'Active Faults in
Japan: Sheet Maps and Inventories' [Research



Wesnousky et al.: Deformation of an Island Arc 6843
TABLE 4. Summary of Intraplate Deformation Rates Determined With Seismologic Data
Shortening Extension
Moment, Strain Strain
Time 1025/yr Rate, Rate, Azimuth, Rate, Rate, Azimuth,
Period Mechanism dyne cm 10'8/yr mm/yr deg 10'8/yr mm/yr deg
Northeast Japan
1881-1980 Niigata (1964) 6.6 5.7 11.1 100 6.0 0.1 vertical
1581-1980 Niigata (1964) 3.2 2.7 5.3 100 2.9 0.4 vertical
Central Japan
1881-1980 Nobi 'a' (1891) 2.5 3.4 8.7 100 3.1 7.1 10
1581-1880 Nobi 'a' (1891) 2.1 2.6 6.7 95 2.6 5.8 5
West Honshu
1881-1980 Nobi 'a' (1891) 1.0 0.9 3.5 125 0.9 1.3 35
1581-1880 Nobi 'a' (1891) 0.34 0.6 2.0 105 0.6 0.1 15
Izu Peninsula
981-1980 none 0.044 1.4 1.3 150 1.4 0.6 60
*The focal mechanism assumed for historical earthquakes. See Table 2.

Group for Active Faults of Japan, 1980a, b]
(hereinafter referred to as the 'active faults
book') provides for the first time detailed data
of wuniform quality describing all active
Quaternary faults in Japan. Faults listed and
mapped at 1:200,000 (Figure 10b) in the active
faults book were recognized primarily by inter-
pretation of aerial photographs supplemented by
geological maps. Major faults were checked in
the field. Each map is supplemented by a table
detailing, as available, the strike, dip, length,
total displacement, and average rate of slip of

each fault in that area. Each fault is also
classified in terms of its 'certainty': (I) Cer-
tain beyond doubt that the Ffault was active

during the Quaternary, (II) though not definmitely
certain of the age of the offset features, it is
possible to infer the sense of displacement and
the fault is generally considered to have been
active during the Quaternary (T. Matsuda, per-—
sonal communication, 1981), (III) the fault is a
mere lineament only suspected to be active during
the Quaternary.

The data in the active faults book provides
most of the information necessary to describe the
average rate of seismic moment release () of
each Quaternary fault. Assumptions need only be
made when assigning a value for the shear modulus
(u= 3 x 10! dyne/cm?), the dimension of fault
width (W) and in those cases where information on
fault dip (8) is not available. Those faults
listed without information of the dip, but iden-
tified as dip slip faults, are assumed to be
reverse type (rake = 90°) and to dip at 45°.
Similarly, strike slip faults without dips speci-
fied are assumed to dip at 90° and have a rake of

0° (left lateral) or 180° (right lateral). The
parameter of fault width is assigned as follows:
(1) faults of length >15 km are given a fault
width of 15 lm/sin (8) (they break through the
entire seismogenic thickness), (2) faults of
length <15 km with total displacements <5 m are
assumed to have equidimensional fault areas,
(3) faults of length <15 km with displacements of
>5 m are assigned a fault width of 15 km/sin (98)
(they break through the entire seismogenic
thickness). Earthquakes of length greater than
15 km, particularly those with slip greater than
2-2.5 m, generally have a fault width approaching
15 tm (the seismogenic thickness) or greater
(Table 2). Since all faults of length »15 km in
the active faults book have displacements >5 m,
assumption 1 is reasonable. Assumption 2 1is
justified by looking at the source dimensions of
smaller earthquakes (length <15 km) (Table 2).
The width of these smaller earthquake ruptures is
usually about the same as the length. Hence, a
conservative manner in which to estimate the
gource dimensions of those geologic faults, with
length <15 km and u <5 m, ik to assume (assump-
tion 2) that they are equidimensional (width =
length). Many geologic faults of 1- to 15-km
length are listed in the active faults book with
displacements of the order of tens of meters.
Average displacements associated with even the
largest earthquakes in Table 2 reach to only a
few meters, and furthermore, these large earth-
quakes generally have fault lengths >20 km.
Hence, it is not common for earthquakes with a
fault length of <15 lkm to have displacements
>5 m. Instead it is more reasonable to assume
that the short fault segments with the larger



6844

J
|37 (mmyyr)
CRUSTAL SHORTENING CRUSTAL SHORTENING

-9

(10 /yn
STRAIN RATES

MOMENT-RELEASE RATE = MOMENTRELEASE RATE

Fig. lla Fig. 11b

Fig. 11. (a) Regional (see Figure 10a) averages of the rates of moment release, hori-
zontal compressive strain, and crustal shortening calculated from the 400-year record
of seismicity. Supposition that these values are representative of secular rates is
dependent on the rate of seismicity as well as the quality of the historic record of
earthquakes in each respective region. Each area is discussed separately in the text.
Principal directions of horizontal compressive strain and shortening are denoted by
dashed bars. Note that the values in the Izu region are computed only from seismicity
within the small dashed box that encloses the Izu Peninsula. No estimate is given for
the Izu region as a whole because proximity to plate boundaries negated confident
identification of historical intraplate earthquakes. (b) Case 2 regional (see Figure
10a) and grid-by-grid (see Figure 10b) averages of the rates of moment release, hori-
zontal compressive strain, and crustal shortening calculated from slip rates of active
faults on land. Valid comparison of these values with rates obtained from the 400-
year record of seismicity presented in Figure lla is conditional to the distribution
of seismicity, the regional geology, and the style and rate of faulting in each re-
spective region. See text for further discussion. Principal directions of horizontal
compressive strain for the larger intraplate regions and smaller grids are shown by
dashed bars and thin solid lines, respectively. Smaller numerals within the region of
central Japan give average rates for the local areas enclosed by the dashed boxes.



Wesnousky et al.:

(>S5 m) displacements listed in the active faults
book are the result of many earthquakes occurring
along a major fault of which only a small portion
is presently visible at the surface. Faults with
such large displacements probably cut through the
entire seismogenic thickness of the crust
(assumption 3). We use these assumptions and the
data provided in the active faults book to calcu-
late the average rate of moment release (§) for
each active Quaternary fault.

Rates of Moment Release and Crustal Shortening
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moment release, when cases 1 and 3 are assumed,
do not vary by more than a factor of 2 from
rates calculated assuming case 2 (Table 5). The
results thus appear quite stable and are not
greatly dependent on the estimates of slip rate
assumed for those faults without specified slip
rates but categorized only as degree 'A,' 'B,' or
'C.'

Comparison of the Average Rates of Deformation

Determined From Seismicity and

Quaternary Fault Data

Estimated from Slip Rates on Quaternary Faults

Average rates of slip on a geologic fault may
be estimated only when the age of geologic and
geomorphologic features offset by the fault are
known. Slip on active faults in Japan is gener-
ally evidenced by the displacement of low-relief
surfaces that formed by either fluvial or marine
deposition and erosion during the Quaternary.
Tephra and organic matter in these terraces may
be dated with radiometric techniques, and hence
the age of the displaced surfaces determined.
The dates of fault offsets listed in the active
faults book are prevalently 1less than about
200,000 years of age. Hence, values of slip rate
in the active faults book provide us directly
with information of the average rate of deforma-
tion in Japan during the late Quaternary.

Specific values of slip rates are given in

the active faults book only when the ages of
displaced features have been quantitatively
determined. In many cases the precise age of

displaced geologic markers is not known but can
be constrained within certain limits. In such
cases, the active faults book provides estimates
of the 'degree' of slip rate: degree 'A,' 1-10
mm/yr; degree 'B,' 0.1-1 mm/yr; degree 'C,’
0.01-0.1 mm/yr. The momeat release rate (}) may
thus be defined for all faults listed in the
active faults book once a specific numerical
value of slip rate is assigned to those faults
with slip rates categorized only as degree 'A,’
'B," or 'C.' |Three cases are considered here:
Case 1, faults of degree 'A,' 'B,' and 'C' slip
at 1 mm/yr, 0.1 mm/yr, and 0.01 mm/yr, respec-
tively; case 2, faults of degree 'A,' 'B,' and
'c' slip at 5 mm/yr, 0.5 mm/yr, and 0.05 mm/yr,
respectively; case 3, faults of degree 'A,' 'B,'
and 'C’' slip at 10 mm/yr, 1 mm/yr, and 0.1 mm/yr,
respectively. For each case, the moment release
rate (ff) of Ffaults of certainty I and II are
summed, and formula (3) is used to calculate the
principal directions and rates of horizontal
strain of each intraplate region.

The longer time base of the Quaternary fault
data allows us to view the deformation process
with greater detail than with historic seismicity
data. The results of the deformation analysis
for faults of certainty I and II, for each indi-
vidual map (Figure 10b) and larger intraplate
regions (Figure 10a), are summarized in Table 5.
M, for each intraplate region, when only faults
of certainty I are considered, is also for the
sake of comparison listed in Table 5. Confidence
limite on rate estimates for each region may be
obtained by comparing case 2 results to the range
of values defined by cases 1 and 3 in Table 5.
Results for case 2 are pictorially presented in
Figure 1lb. In general, the average rates of

A valid comparison of values of ff estimated
from the seismicity and geologic data sets is
strongly dependent on the quality of the geologic
record of offsets. 1In this section, values of H
calculated from the two data sets are compared
and discussed with regard to the distribution of
seismicity, the style and rate of faulting, and
the regional geology. The best estimates of sec-
ular My, and the horizontal rates of strain and
crustal shortening are then provided for each
region in Figure 12.

In central Japan, the seismicity is concen-
trated on land (Figure 5), faulting is generally
strike slip (Figure 4), there is very little
sedimentary cover [Research Group for Quaternary
Tectonic Map, 1973]l, and large earthquakes gener-
ally produce observable surface ruptures along
mappable geologic faults [e.g., Matsuda, 1977].
Both the seismicity and fault data indicate that
central Japan (grids 63-78) is being compressed
in an easterly azimuth. M, estimated from
Quaternary fault data ranges from 0.6 to 1.9 x
1025 dyne cm/yr (Table 5). M, (2.1 x 1025 dyne
cm/yr) computed from the 400-year record of seis-
micity lies just at the upper bound of the range
of values constrained by the geologic data.
Similarly, seismologically determined rates of
horizontal compressive strain and crustal short-
ening (2.6 x 10~%/yr and 6.7 mm/yr, respectively)
are at the high end of the range of rates deter-
mined geologically (0.9 to 2.6 x 10'a/yr and 2.2
to 6.6 mm/yr). Qualitative examination of data
in Figure 8 indicates that estimates of M, for
historical earthquakes are on average limited to
a factor of 2 to 3. When such errors in the
computation of M, from the 400-year record of
seismicity are considered, the slightly larger
rates determined seismologically should not be
congsidered significant. We may arrive at a
similar conclusion from geologic considerations.
Aseismic creep has not been observed on any ac-
tive faults in Japan except for relatively minor
amounts of fault slip immediately after great
earthquakes [Matsuda, 1977]. The geologic record
of fault offsets should then at best, if perfect-
ly preserved and recognized, yield estimates of
deformation rates equal to those obtained from
seismicity data. More likely is that fault off-
sets are not perfectly preserved and, hence, not
always recognized. The geologic data will thus
probably yield a minimum estimate of M,. Noting
that slip rates on Quaternary faults are gener-
ally estimated from displacement of features
between 10,000 and 200,000 years old, the simi-
larity of the values obtained from the two data
sets strongly suggests that the mode and rate of
deformation in central Japan has been steady
through the late Quaternary.
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Rates of Crustal Shortening Estimated From Slip Rates on Faults of Certainty I and II.

TABLE 5.
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/23
10 dyne-cm/yr
MOMENT-RELEASE RATE
Fig. 12. An integration of data in Figures lla

and 11b showing the best estimates of the long-
term averages of the rates of seismic moment re-
lease, horizontal compressive strain, and crustal
shortening of intraplate regions of Japan.

In northeast Japan, both the geologic and
geismicity data indicate that the average trend
of maximum horizontal shortening is about due
east. The rate of moment release, and hence
deformation, estimated from the fault record is,
however, 4 to 16 times less than estimates
obtained with the seismicity data. The average
rate of moment release calculated from the
geologic record of fault displacements is 0.2 to
0.8 x 1025 dyne cm/yr in contrast to 3.2 x 1025
dyne cm/yr estimated from the 400-year historical
record of seismicity. The large difference in
M, estimated from seismicity and the longer geo-
logic fault record at first sight implies that
the rate of faulting in northeast Japan has
recently increased dramatically, but closer
examination of the geologic data and distribution
of seismicity indicates that this is probably not
the case.

Northeast Japan, in contrast to ceatral Japan,
is largely overlain by Neogene and Pleistocene
sediments [Research Group for Quaternary Tectonic
Map, 1973] and is characterized by reverse-type
faulting. Many faults in northeast Japan may
possibly remain unrecognized because they do not
completely break through the sedimentary cover.
Furthermore, less than 502 of the moment release
in northeast Japan during the last 400 years oc-
curred onshore. Thus, a major amount of moment
release and crustal shortening in northeast Japan
takes place offshore along the Japan Sea coast.
This is similarly reflected in the distribution
of active faults (Figure 4) and folds [Huzita,
1980; 1Ishiwada and Ogawa, 1976]. Deformation

Deformation of an Island Arc

offshore would not, of course, be recorded by
active faults on land. Thus, the recent increase
in the rate of deformation in northeast Japan,
implied by the difference in M, obtained from the
geologic and seismologic data, is probably not
real but more likely reflects that the geologic
record of fault offsets in northeast Japan is
incomplete. Hence, ¥ in northeast Japan is best
constrained by the seismologic data.

In western Honshu, M, computed from Quaternary
fault data (2 to 9 x 10?3 dyne cm/yr) is an order
of magnitude less than M, computed from the seis-
micity data (3.4 x 102% dyne cm/yr). In western
Honshu, seismic activity is about an order of
magnitude less than seen in central Honshu, a
region of approximately equal area. Thus, in
western Japan a proportionately greater period of
time (>>400 years) as compared to central Honshu
is probably needed to obtain an accurate estimate
of secular M, from seismicity data. Hence M,
computed from the Quaternary fault data presents
a better constraint for estimates of secular M,.
Geologically determined values of My, (2 to 9
x 1023 dyne-cm/yr) convert to maximum rates of
horizontal compressive strain and crustal
shortening of 0.4 to 1.9 x 10'9/yr and 0.1 to
0.7 mm/yr, respectively, oriented about 100° east
of north.

In Shikoku, M, estimated from the geologic
data is about 5 to 7 x 102% dyne cm/yr. Virtual-
ly all of this may be attributed to slip along
the median tectonic line (MTL)., The MTL has been
aseismic for the last 1000 years [Matsuda, 1969,
1977] and does not show evidence of aseismic
creep [Okada, 1970]. This suggests that enough
energy is now stored along the MIL to produce an
earthquake with seismic M, = 5 to 7 x 1027 dyne
cm if strain buildup in this region has proceeded
continuously through historic time [Shimazaki,
1976]. This is greater than the M, of the great
1891 Nobi earthquake. Figure 11b shows that the
slip and orientation of the MIL are consistent
with being caused by a compressive stress field
that trends northwest.

Rates of deformation in the Izu Peninsula
determined from seismicity data are median to the
range of estimates obtained from fault data. The
moment release and crustal shortening rates
obtained with the fault data range from 2.1 to
11.8 x 1023 dyne cm/yr and 0.3 to 2.6 mm/yr, re-
spectively (Table 5), in comparison to estimates
of 4.4 x 1023 dyne cm/yr and 1.3 mm/yr assessed
from the seismicity data (Figure lla). The trend
of maximum shortening indicated by each data set
is also similar, treading about 30° west of
north. The geologic data further show that the
region immediately northward of the Izu Peninsula
reflects similar rates of horizontal shortening
(0.9 to 1.7 mm/yr) in a northerly direction (Fig-
ure 11b). The two data sets are thus consistent
with the hypothesis that the rate and style of
deformation in the Izu Peninsula has been
relatively constant during the late Quaternary.

Discussion

The axes of maximum crustal shortening
obtained from recent triangulation weasurements
[e.g., Nakane, 1973] show a pattern like that ob-
tained in this study (Figure 11b). Geodetically
measured rates of horizontal compressive strain
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obtained by Nakane [1973], however, range up to
1t 3 x 10'7/yr as compared to 2 to 3 x
10~°/yr determined in this paper. Similar ob-
servations have also been presented by Kaizuka
and Imaizumi [1981]. We have measured only the
permanent component of deformation as accommodat-
ed by slip on intraplate faults. The difference
between our values and Nakane's [1973] must be
attributed to other strain processes. Folding
may account for part of the difference. Elastic
compressive strain increase during the inter-
seismic periods of great interplate earthquakes
[e.g., Scholz and Kato, 1978; Shimazaki, 1974a,
b; Yamashina et al., 1978] may also in large part
produce the discrepancy in values measured by the
two techniques. This component of strain,
however, may not be considered permanent, since
much of it may be released coseismically during
the great interplate earthquakes [e.g., Scholz
and Kato, 1978].

Strain release in Shikoku is predominantly
taken up as slip along one major fault, the
median tectonic line (MTL). The easterly strike
of the MIL is consistent with a model in which
oblique plate subduction of the Philippine Sea
plate in a northwest direction is partially taken
up by right-lateral motion along the MTL (Figure
3) [Fitch, 1972; Shimazaki, 1976]. Deformation
of Honshu, in contrast, is distributed as slip on
a system of many reverse and strike slip faults.
The relative plate velocity vector between the
Pacific and Eurasia, along the Japan trench, is
about 9.7 cm/yr in an easterly azimuth (Figure
3). Maximum horizontal shortening in northeast
Honshu, as accommodated by slip on intraplate
faults, is also directed in an easterly direction
and averages about 5 mm/yr. This suggests that
about 5% of the relative plate velocity along the
Japan trench is taken up as a relatively homo-
geneous compression of northeast Japan.

Interpretation of the intraplate stress field
as being solely influenced by the transmission of
compressive stress across the plate boundaries
is, however, complicated by the observation that
the central and western regions of Honshu are
also characterized by an eastward compression
rather than a northwestward compression, as might
be expected from the proximity of the two regions
to the Nankai trough. One must thus appeal to
other factors in attempting to explain the east
trending stress field of central and western
Japan. The northward impingement of the Izu
Peninsula into Honshu [Matsuda, 1978; Somerville,
1978] may affect the stress field in central
Honshu similar to the way stresses in Asia are
influenced by the continuing northward encroach-
ment of India [Tapponnier and Molnar, 1977].
This is, however, quite speculative and a satis-
fying explanation of the stress field in central
and western Japan remains a problem.

The major portion of the Japanese Islands was
uplifted during the Quaternary period [Research
Group for Quaternary Tectonic Map, 1973]. Simi-
larly, the horizontal compressional tectonics of
the Japanese Islands commenced at the onset of
the Quaternary period (1-3 m.y. B.P.) [Sugimura,
1967]. This suggests that the two processes are
physically related. Northeast Japan is charac-
terized by reverse-type faulting. This geometry
of faulting constrains horizontal shortening to
be accompanied by vertical thickening. Our
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analysis of the seismicity data in northeast
Japan indicates that observed horizontal rates of
shortening in northeast Japan should be accom-
panied by about 0.4 mm/yr thickening of the upper
15 km of the crust. Assuming that this is about
70%Z isostatically compensated, this thickening
would result in only 0.1 to 0.2 mm/yr of observ-
able wuplift. In central Japan, virtually no
uplift may be attributed to horizontal shortening
of the seismogenic layer because faulting is
predominantly strike slip. Quaternary (last 1 to
3 m.y.) uplift in northeast and central Japan is
on average greater than 500 m. These observa-
tions thus indicate that processes responsible
for most of the Quaternary uplift of the islands
must be seated beneath the upper 15 km seismogen-—
ic layer. Strain thickening of the lithosphere
beneath the seismogenic layer may play a signifi-
cant role in the uplift process.

Conclusion
The seismicity and geologic data in Japan
allow comparison of rates of seismic moment

release and, hence, crustal shortening over time
periods ranging from hundreds to greater than
about 100,000 years. The rate of seismic moment
release in intraplate Japan during the last 400
years has averaged 5 to 6 x 1025 dyne cm/yr. In
central Japan, where seismic activity is predom-—
inantly located on land, the rate of seismic
moment release calculated from recent seismicity
data is in good agreement with the rate obtained
from data describing the average slip rates of
Quaternary faults. We interpret this result to
suggest that the mode and rate of deformation we
see in central Japan has been steady for at least
the last 10,000 to 200,000 years. The seismicity
and Quaternary fault data in the northeastern,
western, and Izu Peninsula regions of intraplate
Japan are also consistent with this hypothesis.
Of direct consequence to the seismologist con-
cerned with assessing seismic risk, the results
obtained in this study further suggest that the
release of seismic moment in intraplate Honshu is
relatively free from secular variation when
averaged over time periods of several hundreds of
years.
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