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Fault-Scaling Relationships Depend on the Average Fault-Slip Rate

by John G. Anderson, Glenn P. Biasi,* and Steven G. Wesnousky

Abstract This study addresses whether knowing the slip rate on a fault improves
estimates of magnitude (Mw) of shallow continental surface-rupturing earthquakes.
Based on 43 earthquakes from the database of Wells and Coppersmith (1994), An-
derson et al. (1996) suggested previously that the estimates ofMw from rupture length
(LE) are improved by incorporating the slip rate of the fault (SF). We re-evaluate this
relationship with an expanded database of 80 events, which includes 56 strike-slip, 13
reverse-, and 11 normal-faulting events. When the data are subdivided by fault mecha-
nism, magnitude predictions from rupture length are improved for strike-slip faults
when slip rate is included but not for reverse or normal faults. Whether or not the
slip-rate term is present, a linear model with Mw ∼ logLE over all rupture lengths
implies that the stress drop depends on rupture length—an observation that is not
supported by teleseismic observations. We consider two other models, including one
we prefer because it has constant stress drop over the entire range of LE for any con-
stant value of SF and fits the data as well as the linear model. The dependence on slip
rate for strike-slip faults is a persistent feature of all considered models. The observed
dependence on SF supports the conclusion that for strike-slip faults of a given length,
the static stress drop, on average, tends to decrease as the fault-slip rate increases.

Electronic Supplement: Table of earthquakes and parameters.

Introduction

Models for estimating the possible magnitude of an
earthquake from geological observations of the fault length
are an essential component of any state-of-the-art seismic-
hazard analysis. The input to either a probabilistic or deter-
ministic seismic-hazard analysis requires geological con-
straints because the duration of instrumental observations of
seismicity is too short to observe the size and to estimate the
occurrence rates of the largest earthquakes (e.g., Allen, 1975;
Wesnousky et al., 1983). Thus, wherever evidence in the
geological record suggests earthquake activity, it is essential
for the seismic-hazard analysis to consider the hazard from
that fault, and an estimate of the magnitude of the earthquake
(Mw) that might occur on the fault is an essential part of the
process. The primary goal of this study is to determine if
magnitude estimates that are commonly estimated from fault
length (LE) can be improved by incorporating the slip rate
(SF) of the fault.

Numerous models for estimating magnitude from rupture
length have been published. Early studies were by Tocher
(1958) and Iida (1959). Wells and Coppersmith (1994) pub-
lished an extensive scaling study based on 244 earthquakes.

Some of the more recent studies include Anderson et al.
(1996), Hanks and Bakun (2002, 2008), Shaw andWesnousky
(2008), Blaser et al. (2010), Leonard (2010, 2012, 2014), and
Strasser et al. (2010). For probabilistic studies and for earth-
quake source physics, it is valuable to try to reduce the uncer-
tainty in these relations. Motivated by Kanamori and Allen
(1986) and Scholz et al. (1986), Anderson et al. (1996; here-
after, AWS96) investigated whether including the fault-slip
rate on a fault improves magnitude estimates given rupture
length. They found that it does, and proposed the relationship
Mw � 5:12� 1:16 logLE − 0:20 log SF, thus indicating that
slip rate is a factor. A physical interpretation of a significant
dependence on slip rate is that, for a common rupture length,
faults with higher slip rates tend to have smaller static stress
drop. Since the publication of AWS96, the number of earth-
quakes with available magnitude, rupture length, and slip-rate
estimates has approximately doubled. This article considers
whether these new data improve or modify the conclusions
from the earlier study.

One consideration in developing a scaling model is that
seismological observations have found stress drop in earth-
quakes to be practically independent of magnitude. Kana-
mori and Anderson (1975) is one of the early papers to
make this observation. Recent studies that have supported
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this result include Allmann and Shearer (2009) and Baltay
et al. (2011). Apparent exceptions have been reported based
on Fourier spectra of smaller earthquakes, but as magnitude
decreases, attenuation can cause spectral shapes to behave
the same as they would for decreasing stress drop (e.g., An-
derson, 1986). Studies that have taken considerable care to
separate these effects have generally concluded that the aver-
age stress drop remains independent of magnitude down to
extremely small magnitudes (e.g., Abercrombie, 1995; Ide
et al., 2003; Baltay et al., 2010, 2011). However, all of these
studies find that for any given fault dimension, the range of
magnitudes can vary considerably (e.g., Kanamori and Allen,
1986). Despite this variability, it seems reasonable to evalu-
ate a scaling relationship that is based on a constant stress

drop before considering the additional effect of the fault-slip
rate. This vision guides the development of the considered
scaling relationships. Details of these models for the relation-
ship of stress drop and the fault dimensions are deferred to
the Appendix. The following sections describe the data,
present the summary equations for three alternative models,
fit the alternative models to the data, and discuss the results.

Data

Tables 1 and 2 give the preferred estimates of Mw, LE,
and SF for the earthquakes used in this analysis. These values
and their corresponding uncertainty ranges are given in
Table S1 (Ⓔ available in the electronic supplement to this

Table 1
Earthquakes from 1968–2011 Used in This Study

Event
Number Event Name

Event Date
(yyyy/mm/dd) Mw

Rupture
Length (km)

Slip Rate
(mm/yr) Mechanism*

2 Fukushima-Hamadori, Japan 2011/04/11 6.7 15 0.02 N
4 Yushu, China 2010/04/14 6.8 52 12 S
5 El Mayor–Cucapah 2010/04/04 7.3 117 2.5 S
6 Wenchuan, China 2008/05/12 7.9 240 1.3 R
7 Kashmir, Pakistan 2005/10/08 7.6 70 3.1 R
8 Chuya, Russia (Gorny Altai) 2003/09/27 7.2 70 0.5 S
9 Denali, Alaska 2002/11/03 7.8 340 12.4 S
10 Kunlun, China 2001/11/14 7.7 450 10 S
11 Düzce, Turkey 1999/11/12 7.1 40 15 S
12 Hector Mine, California 1999/10/16 7.1 48 0.6 S
13 Chi-Chi, Taiwan 1999/09/21 7.7 72 12.9 R
14 İzmit, Turkey 1999/08/17 7.5 145 12 S
15 Fandoqa, Iran 1998/03/14 6.6 22 2 S
16 Manyi, China 1997/11/08 7.4 170 3 S
17 Sakhalin Island (Neftegorsk), Russia 1995/05/27 7.0 40 4 S
18 Northridge, California 1994/01/17 6.7 21 0.4 R
19 Landers, California 1992/06/28 7.2 77 0.4 S
20 Luzon, Philippines 1990/07/16 7.7 112 15 S
21 Rudbar, Iran 1990/06/20 7.4 80 1 S
22 Loma Prieta, California 1989/10/17 6.8 35 3.2 R
25 Superstition Hill, California 1987/11/24 6.6 25 3 S
26 Edgecumbe, New Zealand 1987/03/02 6.4 15.5 2 N
28 Marryat, Australia 1986/03/03 5.8 13 0.005 R
29 Morgan Hill, California 1984/04/24 6.1 20 5.2 S
30 Borah Peak, Idaho 1983/10/28 6.9 36 0.15 N
31 Coalinga, California 1983/05/02 6.4 25 1.4 R
32 Sirch, Iran 1981/07/29 7.1 65 4.3 S
33 Corinth, Greece 1981/02/25 6.1 14 1.7 N
34 Corinth, Greece 1981/03/04 5.9 15 0.3 N
35 Daofu, China 1981/01/24 6.7 44 12 S
36 El Asnam (Ech Cheliff), Algeria 1980/10/10 6.9 36 0.8 R
37 Imperial Valley, California 1979/10/15 6.4 36 17 S
38 Coyote Lake, California 1979/08/06 5.8 14 11.9 S
40 Tabas, Iran 1978/09/16 7.4 90 1.3 R
41 Bob-Tangol, Iran 1977/12/19 5.8 19.5 4 S
42 Motagua, Nicaragua 1976/02/04 7.5 230 12 S
43 Luhuo, China 1973/02/06 7.5 90 14 S
44 San Fernando, California 1971/02/09 6.8 19 1.8 R
45 Tonghai, China 1970/01/04 7.2 60 2 S
46 Dasht-e-Bayaz, Iran 1968/08/31 7.1 80 5 S
47 Borrego Mtn, California 1968/04/09 6.6 33 6.7 S

*N, normal, S, strike slip, R, reverse.
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article), along with the references for all estimates. Events
considered for analysis come from AWS96 and Biasi and
Wesnousky (2016). Some AWS96 events were not used be-
cause uncertainties in one or more of the magnitude, length,
or slip-rate parameters were considered too large or too
poorly known to contribute to the parametric regressions.
Events in Biasi and Wesnousky (2016) were selected on
the basis of having a well-mapped surface rupture and non-
geologically estimated magnitude. Their list builds on the list
of fault ruptures of Wesnousky (2008) by adding more recent
events and by including surface ruptures newly documented
by geologic field work. Interested readers are referred to
these previous papers for further description of each event.
Overall, the database is heavily weighted toward surface-
rupturing earthquakes. Some events in Biasi and Wesnousky
(2016) were not included for lack of a resolved fault-slip rate,

or because their rupture lengths were too short. Events with
LE < 15 km were generally not included. The smallest pre-
ferred estimate of Mw is 5.7.

Earthquakes after 1900 were only included if some in-
dependent (nongeologic) means was available to estimate
magnitude. Moment estimates from waveform modeling
were preferred to body-wave magnitudes where both were
available. The six earthquakes prior to 1900 are particularly
well documented, as described in Ⓔ the electronic supple-
ment. Because LE is known for these events and the uncer-
tainty inMw introduced by uncertain depth of faulting is less
than 0.1, the measured slip in these events controls Mw. It
follows that estimating Mw from LE alone for these events
is not circular. The rupture length is normally taken as the
distance between the ends of primary coseismic surface rup-
ture. The sum of the lengths of overlapping traces may be

Table 2
Earthquakes from 1848–1967 Used in This Study

Event
Number Event Name

Event Date
(yyyy/mm/dd) Mw

Rupture
Length (km)

Slip Rate
(mm/yr) Mechanism*

48 Mudurnu Valley, Turkey 1967/07/22 7.3 80 18 S
49 Parkfield, California 1966/06/28 6.2 28 30 S
51 Alake Lake or Tuosuohu Lake or Dulan, China 1963/04/19 7.0 40 12 S
52 Ipak or Buyin-Zara, Iran 1962/09/01 7.0 100 1 R
53 Hebgen Lake, Montana 1959/08/18 7.3 25 0.5 N
54 Gobi-Altai, Mongolia 1957/12/04 8.1 260 1 S
55 San Miguel, Mexico 1956/02/14 6.6 20 0.3 S
56 Fairview Peak, Nevada 1954/12/16 7.1 46 0.14 N
57 Dixie Valley, Nevada 1954/12/16 6.6 47 0.5 N
58 Yenice–Gonen, Turkey 1953/03/18 7.3 60 6.8 S
60 Gerede-Bolu, Turkey 1944/02/01 7.3 155 18 S
61 Tosya, Turkey 1943/11/26 7.6 275 19 S
62 Tottori, Japan 1943/09/10 6.9 33 0.3 S
63 Niksar-Erbaa, Turkey 1942/12/20 6.8 50 19 S
64 Imperial Valley, California 1940/05/19 7.1 60 17 S
65 Erzincan, Turkey 1939/12/25 7.8 330 19 S
66 Tuosuo Lake, Huashixia, China 1937/01/07 7.6 150 11 S
67 Parkfield, California 1934/06/08 6.2 25 30 S
68 Long Beach, California 1933/03/10 6.4 22 1.1 S
69 Changma, China 1932/12/25 7.6 149 5 S
70 Fuyun, China 1931/08/10 7.9 160 0.3 S
71 North Izu, Japan 1930/11/25 6.9 28 2.4 S
72 Laikipia, Kenya 1928/01/06 6.8 38 0.18 N
73 Tango, Japan 1927/03/07 7.0 35 0.3 S
74 Luoho-Qiajiao (Daofu), China 1923/03/24 7.3 80 10 S
75 Haiyuan, China 1920/12/16 8.0 237 7 S
76 Pleasant Valley, Nevada 1915/10/03 7.3 61 0.1 N
77 Chon-Kemin (Kebin), Kazakhstan 1911/01/03 8.0 177 2 R
78 San Francisco, California 1906/04/18 7.9 497 21 S
79 Bulnay, Mongolia 1905/07/23 8.5 375 3 S
80 Laguna Salada, Mexico 1892/02/23 7.2 42 2.5 S
81 Rikuu, Japan 1896/08/31 7.2 40 1 R
82 Nobi/Mino-Owari, Japan 1908/06/28 7.4 80 1.6 S
83 Canterbury, New Zealand 1888/09/01 7.1 65 14 S
84 Sonora, Mexico 1887/05/13 7.2 101.8 0.08 N
85 Owens Valley, California 1872/03/26 7.4 110 3.5 S
86 Hayward, California 1868/10/01 6.9 61 8 S
87 Fort Tejon, California 1857/01/09 7.8 339 25 S
88 Marlborough, New Zealand 1848/10/16 7.5 134 5.6 S

*N, normal, S, strike slip, R, reverse.
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used as the length in the analysis (e.g., event 53, Hegben
Lake, 1959) where the overlapping portions were judged to
contribute materially to the moment release. Rupture lengths
based on aftershock distributions have generally been
avoided, with the exception of six moderate strike-slip
events, all in California. These were retained for continuity
with AWS96 and for support of the regressions at moderate
magnitudes. None control the results. Fault-slip rates are
taken from offsets of geologic features 10–100 ka in age,
where possible, to represent a stable recent slip-rate estimate.
Fault-slip rates from paleoseismic offsets of one or a few
individual earthquakes were avoided, because it is not clear
how that activity would relate to the longer term average slip
rate. Similarly, fault-slip rates from geodetic estimates were
avoided where possible because they measure the current-
day rate but may not represent the longer term average. Fault
creep effects were considered, but no corrections were at-
tempted in the database. First, creep is believed to affect only
a few percent or less of events, and at a fraction of the full slip
rate. Second, uncertainty in fault-slip rate will be seen below
to have little effect on the regression.

Figure 1 shows the cumulative number of earthquakes
used as a function of time. From 1954 to 2013, the rate of
usable events is relatively steady, about 0.9 events per year.
The rate is lower prior to ∼1954 suggesting that the earlier
historical record is less complete.

The earthquakes are separated into general categories of
strike-slip, normal, and reverse faulting. Figure 2 shows the
exceedance rates of considered earthquakes in each of these
categories as a function of magnitude, both combined and
separated by focal mechanism. To estimate the rates, the
number of earthquakes for each of the curves was divided
by 100 yrs. This is obviously an approximation, but consider-
ing Figure 1, the events prior to ∼1910 may roughly compen-
sate for the missing events since 1910. For instance, Figure 2
suggests that continental events that cause surface rupture with

Mw ≥7:0 have occurred at a rate of about 0:5 yr−1, or roughly
once every two years. The rates of strike-slip, reverse, and
normal mechanisms are about 0.4, 0.075, and 0:045 yr−1.
Rounded to the nearest 5%, this implies that about 75% of
those events were strike slip, about 15% had reverse mecha-
nisms, and about 10% had normal mechanisms.

Figure 3 shows maps with locations of all events, using
different symbols to distinguish among mechanisms. The in-
sets show more details on locations of events from the western
United States, the eastern Mediterranean region, and Japan.

Figure 4 plots the preferred slip rates versus the pre-
ferred rupture lengths. Figure 4a emphasizes the overall dis-
tribution of the data, while 4b highlights the 56 strike-slip
faults, 4c highlights the 13 reverse faults, and 4d highlights
the 11 normal faults. The combined data in Figure 4a are
distinctly upper triangular. The points along the diagonal as-
sociate an increase in fault length with an increase in fault-
slip rate, which in turn is likely a function of cumulative slip
(e.g., Wesnousky, 1988, 1999) that does not depend on the
mechanism. The data above the diagonal show that (1) the
entirety of long faults and fault systems does not always
break and that (2) small fast faults may exist. There are two
alternatives to explain the lack of long ruptures on faults with
low slip rates. The first could be purely statistical because
events in the lower right corner of the plot could be too rare
to be represented in the historical record. Alternatively, due
to what Perrin et al. (2016) call “the competition between
damage and healing processes,” faults with slow slip rates
might, during the interseismic period, be sufficiently affected
by differential healing, influences from adjacent faults, or
other processes that long ruptures on slow faults never occur.

Figure 4b–d emphasizes the data available to search for
slip-rate dependency for the three fault types. Figure 4b
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Figure 1. Cumulative number of events used in this analysis
(Tables 1 and 2), shown as a function of time. The color version
of this figure is available only in the electronic edition.
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Figure 2. Event rates, as a function of magnitude and event
types. The rates are estimated based on the approximation that
the data represent about 100 yrs of seismicity, as discussed in
the Data section. The color version of this figure is available only
in the electronic edition.
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shows a distribution of points spanning rupture lengths
mostly between 20 and 400 km and slip rates between 0.3
and 30 mm=yr. Rupture lengths for reverse faults (Fig. 4c)
range from 13 to 240 km although most are between 20 and
100 km. Slip rates for reverse faults are mostly between 0.4
and 4 mm=yr, with outliers at 0.005 and 12:9 mm=yr. Rup-
ture lengths and slip rates for normal faults (Fig. 4d) range
from 14 to 102 km and 0.08 to 2 mm=yr, but are unevenly
distributed within these limits.

Modeling Approaches

The effect of slip rate is tested against three model
shapes for the scaling relationship to confirm that it is not
an artifact of a particular assumption for how magnitude de-
pends on rupture length. The first M1 explores a linear re-
gression of Mw with the logs of length and slip rate:

EQ-TARGET;temp:intralink-;df1;55;107Mw � c0 � c1 logLE � c2 log
SF
S0

; �1�

in which LE is the rupture length (measured along strike) of a
specific earthquake; Mw is the reported moment magnitude
for the respective earthquake (Kanamori, 1977); SF is the slip
rate of the fault on which the earthquake occurred deter-
mined from geological observation; S0 is the average of the
logs of all slip rates in the data set being considered (e.g.,
strike-slip faults, normal faults, etc.); and c0, c1, and c2
are coefficients of regression to be determined. Mathemati-
cally, c0 trades off with −c2 log S0, which allows the param-
eter S0 to be rounded to two significant digits. In this model,
setting SF � S0 is mathematically equivalent to setting
c2 � 0 and thus also equivalent to the model approach used
by Wells and Coppersmith (1994) and others who estimate a
linear dependence of Mw on logLE without including the
slip rate on the fault. Two misfit parameters are considered.
The first σ1L is the standard deviation of the difference be-
tween observed and predicted magnitudes when c2 � 0, so
only LE is used to estimate Mw, while σ1S is the correspond-
ing standard deviation when the slip-rate term in equation (1)
is incorporated. A consequence of the assumed model M1 is
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Figure 3. Locations of events considered in this study. Open circles show locations of events with a strike-slip mechanism. Triangles
represent reverse events, and inverted triangles represent normal mechanisms.
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that unless c1 fortuitously equals 2/3, stress drop increases
for large earthquakes as a function of rupture length LE, re-
gardless of whether slip rate is included or not (Table A1).

The second M2 constrains the slope to give constant
stress drop for small and large earthquakes with a slope
change at the break-point magnitude Mbp. The stress drop
for small and large earthquakes is allowed to differ:

EQ-TARGET;temp:intralink-;df2;55;200Mw �
8<
:
Mbp � c1C log

�
LE
Lbp

�
� c2 log

�
SF
S0

�
LE < Lbp

Mbp � c1L log
�
LE
Lbp

�
� c2 log

�
SF
S0

�
LE ≥ Lbp;

�2�

in which c1C � 2 and c1L � 2=3 for rupture lengths that are
less than or greater than Lbp, respectively, the rupture length
where slope changes from 2 to 2/3. The three unknown
parameters in model M2 are Lbp the rupture length where the
slope changes from 2 to 2/3, Mbp the magnitude at that tran-
sition, and c2 which is again the sensitivity of magnitude to
fault-slip rate. Ruptures of length less than Lbp are consid-

ered to be a small earthquake and scale like a circular rupture
in Table A1, implying that constant stress drop occurs when
c1C � 2. An earthquake with rupture length greater than Lbp

is considered to be a large earthquake and corresponds to one
of the models for a long fault in Table A1 (depending on fault
mechanism), for which the value c1L � 2=3 results in con-
stant stress drop. However, equation (2) does not require the
stress drop for the small earthquakes to be the same as the
stress drop for large earthquakes. Equation (2) has the same
number of unknown parameters to be determined from the
data as equation (1). The two standard deviations of the mis-
fit for model M2 are σ2L and σ2S, which correspond directly
to the parameters σ1L and σ1S of model M1.

The third model M3 is derived from the model of Chin-
nery (1964) for a vertical strike-slip fault that ruptures the
surface. It is assumed that stress drop for the top center of
the fault in this model ΔτC is constant across all rupture
lengths and magnitudes:
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Figure 4. Rupture length–slip-rate distribution of the data in Tables 1 and 2. All points are shown combined in each part of the figure,
(a) each fault type is given equal emphasis, (b) strike-slip faults are emphasized, (c) reverse faults are emphasized, and (d) normal faults are
emphasized. The color version of this figure is available only in the electronic edition.
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EQ-TARGET;temp:intralink-;df3;55;733Mw �

8>><
>>:
2 logLE � 2

3
logΔτC � 2

3

�
log 2π

C2
LWC�γ�

− 16:1
�
� c2 log

�
SF
S0

�
LE
CLW

< Wmax

2
3
logLE � 2

3
logΔτC � 2

3

�
log 2πW2

max
C�γ� − 16:1

�
� c2 log

�
SF
S0

�
LE
CLW

≥ Wmax;
�3�

in which

EQ-TARGET;temp:intralink-;df4;55;652C�γ� � 2 cos γ � 3 tan γ −
cos γ sin γ�3� 4 sin γ�

�1� sin γ�2 : �4�

Details on the development of the model M3 equations are
provided in the Appendix. The value γ is the angle from the
top center of the fault to either of the bottom corners, that is,
tan γ � 2WE=LE, in which WE is the down-dip width of the
earthquake rupture. The model variables include four param-
eters. These are the aspect ratio of the fault for small ruptures
CLW � LE=WE, the stress drop ΔτC, the coefficient that
quantifies the slip-rate dependence c2, and the maximum
fault width Wmax. Equation (3) assumes that the aspect ratio
is constant for small earthquakes and that when the selected
aspect ratio in combination with LE implies a width greater
than Wmax the width is set to Wmax. For model M3, the two
standard deviations of the misfit are σ3L and σ3S, correspond-
ing to the parameters σ1L and σ1S of model M1. As written,
the coefficients of the term in logLE appear to be the same as
in model M2, but for the long ruptures, γ depends on LE, so
the term with C�γ� modifies the slope.

Model equations (1)–(3) require different strategies to
obtain their unknown coefficients. The simplest way to find
the unknown coefficients for equation (1) is using a linear
least-squares regression, which minimizes the misfit of the
prediction of Mw but does not account for uncertainties in
LE or SF. AWS96 approached this difficulty by carrying
out multiple regressions for points chosen at random within
the range of allowed values of all three parameters, and then
looked at the distribution of derived values of the coefficients
of the regression. Alternative approaches to find the coeffi-
cients, described variously as “total least squares” or “gen-
eral orthogonal regression” (e.g., Castellaro et al., 2006;
Castellaro and Bormann, 2007; Wikipedia article “Total
Least Squares,” see Data and Resources) were also consid-
ered for this analysis. The approach by AWS96 turned out to
give the least biased results for a set of synthetic data with an
uncertainty model that we considered to be realistic and con-
sistent with the actual data, so their approach is also used in
this study. The parameters for equation (1) were determined
from 10,000 realizations of the randomized earthquake
parameters to find the distributions of coefficients.

In implementing the AWS96 approach, Mw, LE, and SF
are chosen at random from the range of uncertainties given in
Ⓔ the electronic supplement. The probability distributions for
the randomized parameters reflect that uncertainty ranges are
not symmetrical around the preferred value. The preferred
value is set to be the median. As an example, the probability
distribution for the ith randomized value of LE is as follows:

EQ-TARGET;temp:intralink-;df5;313;664p�LE� �
� 1

�Lpref
E −Lmin

E � �caseA�
1

�Lmax
E −Lpref

E � �caseB�; �5�

in which case A has probability of 0.5, case B has probability
of 0.5, Lmin

E and Lmax
E are the minimum and maximum of the

range on the rupture length, respectively, and Lpref
E is the pre-

ferred value. The seismic moment and slip rate are randomized
using the same algorithm, andMw is found from the random-
ized moment. The standard deviations of the misfit σ1L
and σ1S are the average values from the multiple realizations.

Equation 2 has the additional complication of being
nonlinear in Lbp. We approach the solution by reorganizing
equation (2) as

EQ-TARGET;temp:intralink-;df6;313;499Mbp � c2 log
�
SF
S0

�
� Mw − c1x log

�
LE

Lbp

�
; �6�

in which c1x is either c1C or c1L depending on LE. Assuming
a value for Lbp, it is straightforward to find the unknown co-
efficients Mbp and c2. We considered a set of closely spaced
values of Lbp from the smallest to the longest rupture length
in the data, and choose the value with the smallest total mis-
fit. For each trial value of Lbp, we solved for the unknown
coefficients 10,000 times with values of Mw, LE, and SF
randomized as in equation (5), and our preferred model is
the mean of the coefficients from the multiple realizations.

Model M3 (equation 3) has four unknown parameters, in
which the effects of CLW and Wmax are nonlinear (Fig. A1).
For this reason, a grid of values of CLW and Wmax was
searched; there were 506 points on this grid. For each grid
point, ΔτC and c2 were determined by linear least squares for
10,000 randomly chosen realizations ofMw, LE, and SF. The
average values of ΔτC and c2 were found from the distribu-
tions of these realizations, together with the average values of
σ3L and σ3S. This permitted creating a contour plots of σ3L
and σ3S as a function of the trial values of CLW and Wmax.
The minima in σ3L and σ3S did not generally occur for the
same combinations of CLW and Wmax. Because the results of
model M3 might potentially be used for faults where slip rate
is unknown, we minimized σ3L. The minimum in σ3L is
broad compared with the grid spacing of CLW and Wmax, so
the values that are used come as near as possible, within the
minimum of σ3L, to minimize σ3S as well. The grid limits
considered the maximum fault widths from 10 to 20 km for
strike-slip faults, whereas for reverse and normal faulting the
grid limits considered the maximum fault widths from 18 to
30 km. The larger widths were considered because of the
suggestions of King and Wesnousky (2007), Hillers and
Wesnousky (2008), and Jiang and Lapusta (2016) that a dy-
namic rupture in a large earthquake might reasonably extend
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deeper than the brittle crustal depths associated with micro-
earthquakes.

Analysis Results

Figures 5–7 show results for models M1–M3, respec-
tively, for strike-slip, reverse-, and normal-faulting earth-
quakes. For each mechanism, the curve in the upper frame
shows predicted values of magnitude M̂w for SF � S0. The
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Figure 5. Model M1 (equation 1) for (a) strike-slip, (b) reverse,
and (c) normal faults. For each mechanism, the upper frame shows
Mw plotted as a function of LE. Points are all the preferred values, as
given in Tables 1 and 2. Solid points represent low slip-rate faults.
The solid line uses coefficients given in Table 3 for SF � S0. The
lower frame shows the residuals δMw of the points in the upper
frame from the solid line. The line in the lower frame shows the
predicted effect of SF based on the coefficients in Table 3, that
is, δMw � c2 log�SF=S0�. For strike-slip faults, the significant ef-
fect of fault-slip rate is seen in the clear separation of low and high
slip-rate faults in the upper panel, and the negative slope of the fit to
the residuals in the lower panel. For reverse and normal faults, the
sparse data suggest a different trend in the residuals, indicating that
mixing the three mechanism types is not appropriate.
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Figure 6. Model M2 (equation 2) for (a) strike-slip, (b) reverse,
and (c) normal faults. Coefficients for the lines are given in Table 4.
Other figure details are the same as in Figure 5.
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lower frame shows the residuals from this prediction,
defined as

EQ-TARGET;temp:intralink-;df7;55;149δMwi � Mwi − M̂wi; �7�

for each considered earthquake, and the solid line is given by
δMw � c2 log�SF=S0�. Model coefficients and uncertainties
in estimates of Mw for models M1–M3 are given in
Tables 3–5, respectively.

Model M1: The Linear Model

The parameters for the linear models are given in
Table 3. Figure 8 shows the distribution of coefficients found
for 10,000 trials for strike-slip faults. The widths of these
distributions are used to estimate the uncertainty in each
coefficient. The coefficients c0, c1, and c2 are found simul-
taneously, as opposed to a possible alternative approach, in
which c0 and c1 could be found first, and then c2 is deter-
mined by a second independent linear fit to the residuals.

For strike-slip events, which dominate the data,
c2 � −0:198� 0:023 (Fig. 5a) so δMw is observed to be a
decreasing function of slip rate, similar to AWS96. The data
with a reverse mechanism support δMw increasing, rather
than decreasing, with increased slip rate (Fig. 5b), whereas
for the events with a normal mechanism the slip-rate depend-
ence of δMw is not distinguishable from zero (Fig. 5c).
Considering the distribution of slip-rate data for reverse
faults in Figure 5b, it may be observed that the finding of
slip-rate dependence is the result of mainly a single outlier,
the Marryat earthquake (Mw 5.8, event number 28 in Table 1)
which is reported to have a slip rate of 0:005 mm=yr. Intra-
continental events are included considering, based on
Byerlys law, that the physics of rupture of crystalline rocks
within the range of typical crustal compositions is not,
a priori, different merely because the fault is located far from
a plate boundary or that rock type might be different (e.g.,
Byerlee, 1978; Scholz, 2002). Also, the Marryat Creek event
tends to decrease the slip-rate dependence of δMw, as a
consideration of the remaining points would reveal.
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Figure 7. Model M3 (equation 3) for (a) strike-slip, (b) reverse,
and (c) normal faults. Coefficients for the lines are given in Table 5.
Other figure details are the same as in Figure 5.

Table 3
Coefficients for Model M1, Use in Equation (1), the Different
Fault Types Considered Separately, and Earthquakes Listed in

Tables 1 and 2

Parameter Strike Slip Reverse Normal

c0 4.73 ± 0.062 5.12 ± 0.11 5.25 ± 0.18
c1 1.30 ± 0.031 1.15 ± 0.065 1.02 ± 0.12
c2 −0.198 ± 0.023 0.264 ± 0.036 −0.115 ± 0.109

S0 (mm/yr) 4.8 1.1 0.25
σ1L 0.241 0.322 0.318
σ1S 0.211 0.238 0.303

Table 4
Coefficients for Model M2, Use in Equation (2), the Different
Fault Types Considered Separately, and Earthquakes Listed in

Tables 1 and 2

Parameter Strike Slip Reverse Normal

Lbp 73.8 ± 9.4 46.4 ± 6.4 24.3 ± 1.10
Mbp 7.38 ± 0.070 7.23 ± 0.091 6.80 ± 0.031
c2 −0.176 ± 0.031 0.169 ± 0.042 −0.107 ± 0.091

S0 (mm=yr) 4.80 1.1 0.25
σ2L 0.238 0.281 0.289
σ2S 0.215 0.253 0.277
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Nonetheless, the positive slope of δMw in Figure 5b for
reverse faulting is not a robust result.

Considering Figure 5, the results for the linear model pro-
vide an indication that it is not appropriate to combine differ-
ent fault mechanisms in this type of regressions. The AWS96
model from all rupture mechanisms was Mw � 5:12�
1:16 logLE − 0:20 log SF, which is only slightly different
from the strike-slip case in Figure 5a. That result is consistent
with the AWS96 model being dominated by strike-slip earth-
quakes, and thus demonstrates continuity with the previous
study. However, results here separated by mechanism indicate
that the slip-rate dependence in AWS96 is controlled by the
behavior of strike-slip earthquakes, and not much affected by
the normal mechanisms that show little or no slip-rate depend-
ence, and the reverse mechanisms that potentially show a
different dependence. Suppose as a thought experiment that
the dip-slip cases have no slip-rate dependence, or in other
words, that the variability with slip rate is pure noise. A strong

strike-slip case plus some noise will still resolve to a decently
significant trend even though we added only noise. In apply-
ing the combined regression to dip-slip faults, we may be pro-
jecting back from the strong case into the noise, and saying
things about future dip-slip earthquake expectations that are
not likely based on the available data.

Model M2: The Bilinear Model

Table 4 gives estimated coefficients for model M2
(equation 2), and Figure 6 illustrates the fit to the data. With-
out the slip-rate adjustment, the bilinear model fits the
observed magnitudes as well or better than the linear model
M1, as shown by similar or smaller values of σ2L than the
corresponding values of σ1L. The results again show a
dependence of magnitude on slip rate for strike-slip faults
(Fig. 6a) but not dip-slip faults (Fig. 6b,c). The value of σ2S
is comparable to σ1S for the strike-slip case but larger for the
dip-slip faults. For the strike-slip case, the fit to the data in
Figure 6a is better at large rupture lengths than in Figure 5a.

Model M3: The Constant Stress-Drop Model

Parameters for model M3 are given in Table 5, and the fit
to the data is illustrated in Figure 7. Some features of Figure 7
are noteworthy. For the strike-slip case, the points for faults
with low slip rates (solid points) are mostly above the aver-
age model, whereas points with high slip rates (open circles)
are mostly below the average. This slip-rate dependence is
reinforced in the lower frame of Figure 7a, where the slope
of the linear fit to the residuals is more than five standard
deviations of the slope different from zero. The variance re-
duction by the addition of the slip-rate term is statistically
significant with 80% confidence, based on the F-test. The
same remarks apply for models M1 (Fig. 5) and M2 (Fig. 6).

The strike-slip case in Figure 7a uses Wmax � 15 km,
whereas Table 5 gives model M3 parameters for
Wmax � 20 km as well. The data do not prefer either of these
two models, as the curves and the misfits characterized by
σ3L and σ3S are barely distinguishable, so the plot for the
Wmax � 20 km model is not shown. For the 20 km wide
strike-slip case, both σ3L and σ3S are smaller than the equiv-
alent uncertainties in models M1 or M2. Although this im-
provement is small and statistically insignificant, it is

encouraging that a model with constant
stress drop achieves this result. Hanks
and Bakun (2014) discussed the difficul-
ties associated with several scaling models
for long strike-slip faults, which fit the lon-
gest earthquakes either by increasing the
rupture width by penetrating into the crust
below the depths of microearthquakes or
by increasing the stress drop. Although
Hanks and Bakun (2014) consider the
deep penetration of strike-slip faults below
the depth of microearthquakes to be
unlikely, we provide both models. Recent

Table 5
Coefficients for Model M3, Use in Equation (3), the Different Fault Types

Considered Separately, and Earthquakes Listed in Tables 1 and 2

Parameter Strike Slip (15 km) Strike Slip (20 km) Reverse Normal

ΔτC (bars) 24.9 ± 1.1 15.3 ± 0.7 10.6 ± 0.7 14.0 ± 1.5
CLW 3.8 2.9 1.4 1.2
Wmax (km) 15 20 30 18
c2 −0.170 ± 0.029 −0.174 ± 0.029 0.144 ± 0.027 −0.056 ± 0.095
S0 (mm=yr) 4.8 4.8 1.1 0.25
σ3L 0.236 0.235 0.281 0.312
σ3S 0.214 0.210 0.255 0.305
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Figure 8. Coefficient distributions for the linear strike-slip
model (M1, equation 1). The bar chart shows number of occur-
rences of parameter values among 10,000 realizations for randomly
selected values of Mw, LE, and SF within the uncertainty range of
each. The solid gray line shows the mean value of each parameter.
The dashed gray line shows the value found for the preferred value
ofMw, LE, and SF for each earthquake. The clear negative value of
c2 corresponds to decreasing relative magnitude predictions with
increasing slip rate.
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studies that favor deep penetration include Graves and Pit-
arka (2015) based on experience in modeling ground mo-
tions near the fault and Jiang and Lapusta (2016) based
on the seismic quiescence of the ruptures of past large earth-
quake such as the 1857 earthquake on the San Andreas fault.

The ability to model the data using equation (3) unfortu-
nately does not resolve the “no high stress drop/no deep slip
enigma” articulated by Hanks and Bakun (2014), but rather
pushes it into issues with the aspect ratio and the absolute
value of the constant stress drop. The Wmax � 15 km model
uses a large aspect ratio of CLW � 3:8, compared with
CLW � 2:9 for the Wmax � 20 km model, or 2.4 at the
transition to fix the width of 15 km in the Hanks and Bakun
(2014) model. The higher aspect ratio for theWmax � 15 km
model would also imply that earthquakes such as theMw 6.6
Superstition Hills event (number 25) or theMw 6.2 Parkfield
1966 event (number 49) only penetrate from the surface
to about 7 km depth. Also, the stress drop for the Wmax �
15 km model is rather high, ΔτC ≈ 25 bars, considering that

this corresponds to ΔτS ≈ 50 bars (see the Appendix) in the
more frequently used model of Kanamori and Anderson
(1975). We suggest that variability of the aspect ratio must
contribute to the uncertainties in these scaling relations at the
lower magnitudes.

For the reverse-faulting data, we considered values of
Wmax up to 30 km because reverse faults can have low dips,
and that upper limit is the preferred value. For normal faulting,
we only considered the values of Wmax > 18 km, because
constrained observations of normal faults imply that the fault
width can be that wide (e.g., Richins et al., 1987). For model
M3 to fit the sparse normal-faulting data as well as model M2,
we would need to use a much smaller value of Wmax.

Comparisons

Figure 9 compares the models for the three different
types of mechanisms. Models M2 and M3 tend to resemble
each other most closely, whereas model M1, being linear,
tends to give larger magnitudes for long and short faults
but smaller magnitudes in the center of the length range.

Discussion

The larger data set modeled here compared with AWS96
expands our understanding of slip-rate dependence for the
scaling of magnitude and rupture length. Improvements in
estimates of the magnitudes of earthquakes are realized with
slip-rate dependence for strike-slip faults for all three models
considered here. Thus, the slip-rate dependence in this case is
not an artifact of the underlying scaling model. The distribu-
tion of data in LE − SF space (Fig. 4b) gives further reason
for confidence in the strike-slip case. On the other hand, indi-
vidual models for reverse and normal faulting have, at best,
an equivocal place for slip-rate dependence. This again is
consistent with the uneven distribution of data on the plots
of LE − SF in Figure 4c,d. For models M1 and M2 of the
normal-faulting events, but not for model M3, the sign of
slip-rate dependence agrees with the strike-slip case. Thus,
normal faulting could have slip-rate dependence nudging es-
timates toward smaller magnitudes for higher slip-rate faults
but lacks sufficient data to prove it. The reverse-faulting
events disagree even at the sign of the effect. The disagree-
ment is present whether we retain either or both of the ap-
parent outliers in Figures 5–7. Thus, based on the current
data, we do not find support for the general reduction of mag-
nitude with slip rate implied by the combined set regression
of ASW96. It appears that the strength of the slip-rate effect
among strike-slip events and their sheer numbers relative to
dip-slip events overwhelm the ambiguous (normal) and con-
trary (reverse) data, leading to an apparently general slip-rate
relationship among all data. Thus, our new data set contrib-
utes to the understanding that slip-rate dependence is domi-
nantly a strike-slip fault effect that is not inconsistent with
normal faulting, and not apparently consistent with reverse
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(a) strike-slip, (b) reverse, and (c) normal faults, using SF � S0
for each mechanism.
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mechanism fault rupture. The data available to AWS96 did
not permit this distinction.

If we are guided by studies of earthquake source
physics, model M3 may be preferable to models M1 or M2.
Specifically, the advantage would be the constant stress drop
of earthquakes over the full range of magnitudes, consistent
with, for example, Allmann and Shearer (2009). The slope of
the linear model M1 with rupture length implies that stress
drop increases significantly with rupture length for large
earthquakes. The slopes of the bilinear model M2 are con-
sistent with simple models for scaling with constant stress
drop in the small and large earthquake domains, but the stress
drops in the two domains are different. In addition, because
the buried circular rupture model by construction does not
reach the surface, its applicability to the short ruptures of
model M2 is not obvious.

Constant stress-drop model M3 has the important ad-
vantage compared with dislocation models in an unbounded
space in that it is explicitly designed for surface-rupturing
earthquakes. For this reason, we might expect that it will per-
form well where magnitude scaling is required for calcula-
tion of synthetic ground motions (e.g., Goulet et al., 2015).
The Chinnery (1964) model has uniform slip with a singu-
larity of stress drop near its edges, which enables a closed-
form solution. Stress drop in actual earthquakes is a variable
function of location on the fault, so single values are always
averages. The Chinnery (1964) approach is probably as rea-
sonable as others. The application of the same functional
form for dip-slip earthquakes is entirely ad hoc, of course.
Although it is more complicated, its consistency with a
physical model with a constant stress drop commends it
as a preferred regression. Compared with the better-known
equations summarized by Kanamori and Anderson (1975),
the stress-drop parameter in this model is smaller, emphasiz-
ing that average stress-drop estimates are model dependent.

The adjustment that decreases magnitude for high-slip-
rate strike-slip faults implies that the stress drop on those
faults is lower than on faults of the same length with lower
slip rate. The finding is consistent with the observations of
Kanamori and Allen (1986) and Scholz et al. (1986) that a
longer healing time results in a larger stress required to ini-
tiate rupture and thus a higher stress drop. For normal or re-
verse faulting, the slip-rate dependence is low, and the slip-
rate coefficient c2 is indistinguishable from zero. The find-
ings suggest that, if c2 is not zero for these cases, then c2 is
positive for reverse-faulting earthquakes. This is contrary to
the hypothesis of Kanamori and Allen (1986). We suggest
that if this positive slope is confirmed with added data, the
physical mechanism may be related to the dynamics of rup-
ture. For a reverse fault, the dynamic stresses on a rupture
propagating up-dip are tensile as rupture approaches the sur-
face, so the coefficient of friction or cohesion on the fault is
less relevant.

There are a number of future studies that should be per-
formed to improve upon the results presented here. The first
is to examine the consistency of the models, and especially

model M3, with the observed fault displacement. If the re-
sults, based on the definition of seismic moment (equa-
tion A2), agree with seismic data, the scaling relationship
presented here would be an alternative to the self-consistent
scaling model of Leonard (2010, 2014) for earthquakes in
continental crust.

The second issue that deserves attention is handling
multisegment faults. We consider, for instance, the 1905 Bul-
nay, Mongolia, earthquake, which is the strike-slip point in
Figures 5–7 at 375 km andMw 8.5. The 375 km length is the
distance from one end of the rupture to the other, and does
not include a spur fault in between that is 100 km long. This
event points out that the standard deviations σxL and σxS for
all three models include the potential presence of spur or sub-
parallel faults that do not increase the total end-to-end length
of the rupture. Several other faults in Tables 1 and 2 have
similar issues. A better understanding of how seismic mo-
ment is distributed on multiple segments and fault splays,
as well as how best to measure the lengths of multiple seg-
ment ruptures and how to recognize these features ahead of
the earthquake would help to reduce uncertainties in future
studies of scaling relations. If the result is different from the
approach used by Uniform California earthquake rupture
forecast, v. 3 (UCERF3), it could have a direct impact on
future seismic-hazard analyses.

Conclusions

The primary question asked by this research is if the in-
troduction of slip rate on a fault helps to reduce the uncer-
tainties in estimates of magnitude from observations of
rupture length. We find that such a slip-rate dependence is
reasonably well established for strike-slip cases: as the slip
rate increases for any given fault length, the predicted mag-
nitude tends to decrease. This result is robust in the sense that
the slope of the residuals with slip rate is significantly differ-
ent from zero, and the variance reduction is modestly signifi-
cant for all three of the considered models relating rupture
length and magnitude. For reverse- and normal-faulting
mechanisms, on the other hand, our data do not demonstrate
the presence of a significant slip-rate effect in the relationship
between rupture length and magnitude. Compared with
original results in AWS96, we now suggest slip rate be in-
cluded only for strike-slip faults.

The constant stress-drop model presented here has po-
tential for progress on a standing difficulty in ground-motion
modeling of an internally consistent scaling of magnitude,
length, down-dip width, and fault displacement. Current re-
lations in which magnitude scales with length or area lead to
unphysical stress drops or unobserved down-dip widths, re-
spectively. By working from the model of Chinnery (1964),
our constant stress-drop model has the advantage of starting
with realistic physics including the stress effects of surface
rupture. Work remains to be done in comparing displace-
ments predicted from our model with observations, but
the fact that it fits the current magnitude-length-slip-rate data
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as well or a bit better than the linear and bilinear models sug-
gests that the constant stress-drop model is preferable to
models that do not have this feature.

Data and Resources

The article “Total least squares” is available at https://en.
wikipedia.org/wiki/Total_least_squares (last accessed Febru-
ary 2015).
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Appendix

Fault-Scaling Relations

Basics

This article proposes models to estimate the moment
magnitude of earthquakes based on observed surface rupture
lengths and slip rates. The moment magnitude definition that
we use is implicit in Kanamori (1977):

EQ-TARGET;temp:intralink-;dfa1;55;231Mw � 2

3

�
logM0 − 16:1

�
: �A1�

The units of seismic moment M0 are dyn·cm in equa-
tion (A1). This definition differs slightly from the equation
used by Hanks and Kanamori (1979) but is the equation
recommended for seismic network operations by the
International Association of Seismology and Physics of
the Earth’s Interior since 2005 (see Bormann et al., 2005,
2013; Bormann and Di Giacomo, 2011; and references
therein), and thus is the relationship used by most seismic
networks throughout the world. The seismic moment is de-
fined as

EQ-TARGET;temp:intralink-;dfa2;313;733M0 � μAE
�DE � μLEWE

�DE; �A2�
in which μ is the shear modulus, AE is the fault area ruptured
in the earthquake, and �DE is the average slip over that area.
For a fault that is approximately rectangular AE � LEWE, in
which LE is the rupture length measured along strike andWE

is the down-dip rupture width.
Substituting equation (A2) into (A1), one obtains (for

cgs units)

EQ-TARGET;temp:intralink-;dfa3;313;626Mw � 2

3
logLE � 2

3
logWE � 2

3
log �DE � 2

3
�log μ − 16:1�:

�A3�
This justifies the models that relate magnitude to the log of
fault length, width, and mean slip. Slopes different from 2/3
result from correlations among the fault parameters LE, WE,
and �DE. Wells and Coppersmith (1994) found that the model

EQ-TARGET;temp:intralink-;dfa4;313;520Mw � c1 logLE � c0 �A4�
predicts magnitude from rupture length with a standard
deviation of the misfit σ1 � 0:28.

The possible dependence of stress drop or magnitude on
slip rate was recognized by Kanamori and Allen (1986) and
Scholz et al. (1986). With the addition of the slip-rate term,
equation (A4) becomes, used by Anderson et al. (1996; here-
after, AWS96):

EQ-TARGET;temp:intralink-;dfa5;313;403Mw � c0 � c1 logLE � c2 log SF: �A5�
Testing for a logarithmic dependence on the geological fault-
slip rate SF can be motivated by findings in Dieterich (1972).
In this article, equation (A5) is equivalent to model M1.

Constant Stress-Drop Scaling

The static stress drop ΔτS is the average decrease in the
shear stress acting on the fault as a result of the earthquake
and is proportional to the ratio of average slip to a fault di-
mension. Seismic observations have found that the average
value of ΔτS is approximately constant (∼4 MPa, ∼40 bars)
over a broad range of earthquake magnitudes (e.g., Kanamori
and Anderson, 1975; Allmann and Shearer, 2009), although
there is considerable scatter in these data. Seismic moment,
and thus Mw through equation (A1), can be expressed as a
function of fault dimension and stress drop, as recognized by
Kanamori and Anderson (1975). Selected models are sum-
marized in Table A1.

The equations in Table A1 indicate that constant stress
drop implies the slope c1 � 2:0 for small faults (first case 1)
when LE is equated to the diameter of the circular fault and
c1 � 2=3 for long faults (second and third cases). These ob-
servations motivate a bilinear approach to fit the data, which
is model M2 in this article. The bilinear approach is formu-
lated as follows:
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EQ-TARGET;temp:intralink-;dfa6;55;592

Mw�Mbp�c1C log
�
LE

Lbp

�
�c2 log

�
SF
S0

�
LE<Lbp

Mw�Mbp�c1L log
�
LE

Lbp

�
�c2 log

�
SF
S0

�
LE≥Lbp; �A6�

in which the length Lbp is the length at which the length
dependence of the scaling relationship changes from the
small fault model with slope c1C � 2 to the long fault model
with slope c1L � 2=3. The slip rate S0 is a reference slip rate
which can be chosen arbitrarily, but is conveniently chosen to
be the log average slip rate in the data, so that setting
SF � S0 gives the best fit when slip rate is unknown. The
constant Mbp is the magnitude corresponding to a fault with
length LE � Lbp and slip rate SF � S0. Equation (A6) has
three unknown coefficients (Mbp, Lbp, and c2), which is
the same number as in equation (A5).

However, there are issues with the applicability of the
equations in Table A1. The foremost, for the long faults, is
the width of the seismogenic zone. Table A1 shows that WE

is twice as influential as the fault length, so it needs to be
considered carefully. One approach to estimate this width
is to use the maximum depth of microearthquakes. By this
approach, for strike-slip earthquakes the maximum depth of
microearthquakes equates directly to an estimate of the fault
width, whereas for a reverse or normal fault the dip is incor-
porated. The problem is that the maximum depth of seismo-
genic rupture in large earthquakes is difficult to observe.
King and Wesnousky (2007) discuss this difficulty and
present arguments for why the down-dip width might be
larger in large earthquakes, at least up to some limit greater
than that inferred from the depth range of small earthquakes,
because rocks below the depths of mircoearthquakes might
experience brittle failure under high strain rates. If the width
increases in general for long ruptures, stress drop is no longer
as high for these events because stress drop is inversely pro-
portional to WE, and furthermore the slope c1 can no longer
be reliably constrained by the models in Table A1. King and
Wesnousky (2007) propose that this explains the proposal by
Scholz (1982) that slip in large earthquakes is more nearly
proportional to rupture length than to rupture width.

Another issue is that the first equation in Table A1 as-
sumes that the circular fault is confined within the Earth and
thus neglects free surface effects, while by definition all of
the events considered in this study rupture the surface. This

motivates the development of the model
that is described in the next section.

Relations Based on Chinnery (1964)

Chinnery (1963, 1964) calculated a
stress drop for a rectangular strike-slip
fault that ruptures the surface. Unlike
the circular slip model, the free surface
in the Chinnery model is present for small
earthquakes. His equations assume a uni-
form slip on the fault. Thus, the stress drop

is variable over the fault and becomes singular at the edge of
the fault. His equations give the stress drop on the surface at
the midpoint of the rupture. Numerical solutions in Chinnery
(1963) show relatively uniform stress drop over large por-
tions of the fault. Chinnery (1963) thus suggests that the re-
sults are valid to represent the fault stress drop so long
because the zone of slip fall-off is much smaller than the area
of the fault. The key advantage provided by this approach is
to provide a useful analytical solution.

For the rectangular fault with length LE, width WE, and
aspect ratio CLW � LE=WE, the stress drop in the Chinnery
model ΔτC at the midpoint at the surface is

EQ-TARGET;temp:intralink-;dfa7;313;451ΔτC � μ �DE

2π
C1�Lh;WE�; �A7�

in which

EQ-TARGET;temp:intralink-;dfa8;313;408C1�Lh;WE� �
�
2Lh

aWE
� 3

Lh
−
Lh�3a� 4WE�
a�a�WE�2

�
: �A8�

Note that Lh � LE=2 and a � �L2
h �W2

E�1=2. Observe that
C1 has dimensions of 1=length, and thus C−1

1 is effectively
the fault dimension that is used for calculating the strain. In
other words, the strain change in the earthquake is ∼ �DEC1.
An equation for the seismic moment can be obtained by solv-
ing equation (A7) for �DE and substituting in equation (A2).
The result is

EQ-TARGET;temp:intralink-;dfa9;313;281M0 � 2πΔτC
LEWE

C1�Lh;WE�
�A9�

and thus

EQ-TARGET;temp:intralink-;dfa10;313;236Mw�
2

3
logLE�

2

3
logΔτC�

2

3
log

2πWE

C1�Lh;WE�
−

2

3

� �
16:1:

�A10�
Additional insight into the geometrical term can be obtained
by observing that a is the length of the diagonal from the mid-
point of the fault at the surface to either of the bottom corners.
If the dip of this line is γ, then tan γ � WE=Lh � 2=CLW ,
Lh � a cos γ, WE � a sin γ, and one can rewrite

EQ-TARGET;temp:intralink-;dfa11;313;120C1�Lh;WE� �
1

WE
C�γ�; �A11�

in which

Table A1
Models from Kanamori and Anderson (1975) for the Relationship of Fault Size,

Stress Drop, and Mw

Case M0 Implied Magnitude Relations*

Buried, circular 16
7
ΔτSR3

E Mw � logAE � 2
3
logΔτS � 3:0089

If LE � 2RE:Mw � 2 logLE � 2
3
logΔτS � 2:904

Strike slip, long π
2
ΔτSW2

ELE Mw � 2
3
logLE � 4

3
logWE � 2

3
logΔτS � 3:1359

Dip slip, long π�λ�2μ�
4�λ�μ� ΔτSW

2
ELE Mw � 2

3
logLE � 4

3
logWE � 2

3
logΔτS � 3:3141

*AE � πR2
E, fault area in km

2; RE, fault radius;WE, fault width; and LE, fault length in km, and
ΔτS, stress drop in bars.
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EQ-TARGET;temp:intralink-;dfa12;55;733C�γ� � 2 cos γ � 3 tan γ −
cos γ sin γ�3� 4 sin γ�

�1� sin γ�2 : �A12�

Thus, one can rewrite equation (A7) as

EQ-TARGET;temp:intralink-;dfa13;55;686ΔτC � C�γ�
2π

μ
�DE

WE
: �A13�

Solving equation (A13) for �DE and substituting into equa-
tion (A2) gives the moment of a vertical strike-slip fault that
ruptures the surface as

EQ-TARGET;temp:intralink-;dfa14;55;607M0 �
2π

C�γ�ΔτCLEW2
E: �A14�

Because γ, and thus C�γ�, depends on the fault aspect ratio,
equations (A9) or (A14), can be used to model a transition
from small-earthquake behavior (e.g., the circular fault in
Table A1) to a long-fault behavior. This article, similar to
Hanks and Bakun (2002), maintains a constant aspect ratio as
the fault length increases, until that aspect ratio implies that the
fault width would exceed some maximum. For longer faults,
the width is set to that maximum. Before reaching that maxi-
mum, γ and C�γ� are constant, and

EQ-TARGET;temp:intralink-;dfa15;55;460M0 �
2π

C�γ�ΔτC
L3
E

C2
LW

LE

CLW
< Wmax: �A15�

For longer faults, for which the width is limited, equa-
tion (A14) becomes

EQ-TARGET;temp:intralink-;dfa16;55;388M0 �
2π

C�γ�ΔτCLEW2
max

LE

CLW
≥ Wmax: �A16�

In this case, as the fault length increases while width is held
constant, γ will be decreasing. For the limit of small γ (roughly
γ ≲ 25°), equation (A12) shows that C�γ� → 2, so equa-
tion (A9) approaches

EQ-TARGET;temp:intralink-;dfa17;55;295M0 � πΔτCLEW2
max: �A17�

Equation (A17) differs from the second case in Table A1 for
the long strike-slip fault by a factor of 2 (ΔτS � 2ΔτC), in
which the difference is due to the different boundary condi-
tions used for the two solutions at depth.

From equations (A15) and (A16), converting to magni-
tude, the implied scaling relationship based on the Chinnery
model is

EQ-TARGET;temp:intralink-;dfa18;55;181Mw�
8<
:
2logLE�2

3
logΔτC�2

3

�
log 2π

C2
LWC�γ�

−16:1
�

LE
CLW

<Wmax

2
3
logLE�2

3
logΔτC�2

3

�
log2πW

2
max

C�γ� −16:1
�

LE
CLW

≥Wmax:

�A18�
Equation (A18) will be the third model M3 considered in
this study, with the addition of a slip-rate contribution
�c2 log�SF=S0�, to the two branches of the equation. The

unknown parameters in model M3 are ΔτC, CLW , Wmax,
and c2. Thus, this model has four parameters to be deter-
mined, compared with three parameters in models M1 and
M2. Figure A1 shows the effect of the three parameters
ΔτC, CLW , and Wmax on magnitude predictions. The stress
drop scales the entire curve upward. The aspect ratio CLD

adjusts the level of the magnitude for short rupture lengths.
The maximum width affects the curvature and how rapidly
the curve approaches the asymptotic slope of �2=3� logLE

for long rupture lengths.

Other Models and Considerations

Sato (1972) overcomes the singularity introduced by
Chinnery (1963, 1964) by assuming a smooth ad hoc slip
function on a finite rectangular/elliptical-shaped fault, and
for that function, calculating the average stress drop resulting
from that slip function. Although the results are informative
for source physics studies, the major disadvantages of this
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Figure A1. Model for Mw based on the Chinnery (1964) scal-
ing as given in equation (A18). (a) Effect of changing the stress drop
ΔτC. (b) Effect of changing the aspect ratio of the fault. (c) Effect of
changing the limiting rupture width Wmax.
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approach for our application are that the fault is embedded in
a whole space, and there is no analytical solution comparable
to equation (A7). Rather, the geometrical factor equivalent to
C�γ� can be computed numerically using equations in Sato
(1972) or read from a figure in the paper. Considering these
limitations, this model was not considered further.

Shaw and Scholz (2001) and Shaw and Wesnousky
(2008) implement a numerical model for fault slip in a
half-space with depth-dependent friction. They examine
the statistics of events that rupture the surface. These papers
are interesting for the finding that large surface-rupturing
events also slip below the brittle crustal depths. The scaling
found in the model has properties similar to the scaling in the
Chinnery model. However, the scaling relationship that they
determine has an ad hoc shape, and thus we preferred the
analytical functional form of equation (A18). The physics-
based solution of Chinnery was also preferred to a related
constant stress-drop model by Shaw (2009). This model pro-
poses three regimes of magnitude scaling from length based
on intermediate length–width–displacement–scaling rela-
tions and heuristic arguments for transitions between them.

Rolandone et al. (2004) found some empirical evidence
that might be interpreted to support the penetration of rupture

below the brittle seismogenic layer in large earthquakes.
They found that the maximum depth of aftershocks of the
Landers earthquake were deeper immediately after the
mainshock, and then the maximum depth returned to pre-
earthquake levels over the next few years. This might be
explained by high strain rates in the uppermost part of the
ductile crust, as high strain rates favor brittle failure. How-
ever, postseismic strain rates in that depth range would be
high even if seismic rupture of the mainshock did not extend
that deep, so these observations allow, but do not require,
dynamic rupture below the long-term average depth of
microearthquakes.

Nevada Seismological Laboratory
University of Nevada
Reno, Nevada 89557
jga@unr.edu
stevew@seismo.unr.edu

Manuscript received 21 November 2016;
Published Online 7 November 2017

Fault-Scaling Relationships Depend on the Average Fault-Slip Rate 2577


