1	
2	Brief History of Paleoseismology and Reminder of Hazard Posed by Great
3	Earthquakes along the Himalyan Arc
4	STEVEN G. WESNOUSKY
5	Center for Neotectonic Studies and Nevada Seismological Laboratory
6	University of Nevada, Reno
7	Reno, NV 89557
8	Email: <u>wesnousky@unr.edu</u>
9	

10 Abstract

The career of K. S. Valdiya was marked by persistent calls to public agencies to organize and develop approaches to mitigating hazards posed by geologic processes. Prominent among them was the hazard posed by earthquakes. The observations brought forth with the development of paleoseismology over the past ~30 years have served well to quantify the size, location, and timing of great earthquakes that may be expected along the Himalayan arc in the future. The brief synopsis of the history of paleoseismology and the findings attendant to its application serve here to reiterate K. S. Valdiya's calls for public agencies to address the hazard posed by great earthquakes along the Himalayan arc.

18 Introduction

19 In the tradition of D. N. Wadia and A. Gansser, K. S. Valdiya brought forth contributions fundamental to 20 understanding the stratigraphy and structural evolution of the Himalaya (Gansser, 1964; Thakur, 2003; Valdiya, 21 1980, 1984; Wadia, 1919). Equally significant were his unremitting efforts to distill scientific understanding of 22 geologic processes attendant to the growth of the Himalaya in calls to public agencies to organize and develop 23 approaches to mitigating the hazards posed by those processes (e.g., Valdiya, 1992, 1993, 2001, 2005, 2014, 24 2015). Among the most prominent of these remains that posed by earthquakes. I here provide a brief history of 25 geologic studies that have advanced understanding of the expected location, size, recurrence rate of future large 26 earthquakes along the Himalaya. The synopsis serves as a reminder and call to public and private agencies in 27 India that, while the occurrence of great earthquakes cannot be prevented, society would be best served by 28 organized approaches to mitigate the human and financial losses that will surely accompany the events.

29 The Beginning

30 Paleoseismology embodies the interpretation of the geologic record to assess the timing of past earthquakes.
31 The discipline has its roots in efforts to recognize, understand and assess the rate and timing of development of
32 geologic landforms produced by tectonic disturbance. The beginnings of such study along the Himalayan front
33 are unambiguously traced back to the pioneering effort of the Japanese geographer Takashi Nakata. T. Nakata
34 traveled to Calcutta, India and embarked upon a Ph.D thesis study that led to the seminal work entitled

35 Geomorphology of the Foot-Hills of the Himalayas (Nakata, 1972). Conducted at a time well before the conveniences of satellite imagery and general availability of topographic maps, the sketches and drawings at sites 36 37 reached by the author largely on foot and public bus along ~2000 km of the Himalayan front clearly identify, describe, interpret, and attribute the occurrence of landforms produced by repeated earthquake displacements 38 39 along the Himalaya Front Tectonic Line, a feature now more commonly referred to as the Himalayan Frontal 40 Thrust (HFT). More specifically, he recognized along virtually the entire the length of the Himalayan Frontal Thrust the tectonic genesis of the numerous Dun valleys, youthful scarps in young sediments, and uplifted and 41 42 back-tilted fluvial terraces that now serve to mark the trace of the HFT

43 Plate Tectonics and Blind Earthquakes

44 K. S. Valdiya and his predecessors early recognized that uplift of the Himalaya has resulted from 45 displacement on major thrust faults that strike along the abrupt southern margin of the mountain range. Three major of these thrust systems strike the length of the Himalayan arc and from north to south include the Main 46 Central Thrust (MCT), the Main Boundary Thrust (MBT), and the Himalayan Frontal Thrust (HFT) (Figure 1). 47 48 All have been traced along the 2000 km length of the Himalayan Front. The development of plate tectonic theory 49 in the late 1960s led to the generally accepted interpretation that the thrusting accommodates northward collision 50 of the Indian subcontinent into Eurasia which commenced ~40 m.y. ago (Isacks et al., 1968; Molnar and 51 Tapponnier, 1975, 1977). Seeber and Armbruster (1981) soon thereafter noted the tectonic similarity of the 52 Himalayan arc with oceanic subduction zones and that major shaking during great historical earthquakes is 53 confined largely to areas north of the HFT. From this they explained the occurrence of great earthquakes along 54 the front to be the result of slip on a shallow decollement inclined northward at low-angle up to ~ 100 km and into 55 which sole each the MCT, MBT and HFT (Figure 1b). The model and explanation is generally accepted today. 56 The absence of observed surface rupture along any of the major thrusts during great historical earthquakes brought 57 forth the idea that great Himalayan earthquakes were blind, such that the causative faults did not reach the surface 58 to produce fault scarps but rather expressed only as warping or folding above the leading edge of the fault (Stein 59 and Yeats, 1989). While the confinement of large earthquake ruptures to portions of the decollement may be 60 expected and folding is observed along the front of the Himalaya, the early observations of Nakata (1972, 1989) 61 had already provided clear indication that the largest displacements on the decollement consistently reach the 62 surface to produce scarps and truncated terraces along the Himalayan frontal thrust.

63 Rates of Landform Development and Fault Displacement

Estimates of the ongoing rate of convergence across the Himalayan Front initially arose from plate tectonic and geodetic studies (Bilham et al., 1998; Molnar and Tapponnier, 1977). Such analyses today show ~40 mm/yr of northward convergence of India into Eurasia broadly distributed over a region extending ~1000 km northward into Tibet from the Himalayan front (Molnar and Stock, 2009), with 15 ± 2 mm/yr of the displacement today localized along the Himalayan front (e.g., Lindsey et al., 2018). The plate tectonic and geodetic analyses provide points of reference and comparison to geologic efforts to assess the slip rates of the major Himalayan thrust faults

though the resolution of each method is insufficient to resolve rate of slip on the individual thrusts that strike the

71 length of the Himalayan Front.

72 Efforts to geologically define rates of thrusting along the Himalayan front have largely been along the HFT. 73 The focus arises chiefly in response to Nakata's early observations that repeated displacements is evident in 74 Quaternary landforms along the HFT, whereas similar activity is not apparent along the MCT, and offsets of 75 Quaternary landforms locally evident along the MBT show strike-slip displacements rather than w thrusting. 76 Geologic estimates of the HFT slip rate have come largely from radiocarbon dating of detrital charcoal in fluvial 77 terrace deposits uplifted and abandoned as a result of displacement on the HFT. The first of these efforts may be 78 traced back to the studies of Wesnousky et al. (1999) and Lave and Avouac (2000) in India and Nepal, 79 respectively. The India collaboration developed in response to Dr. V.C. Thakur's kind invitation to host this author 80 at the Wadia Institute of Himalayan Geology as a visiting Fulbright Scholar. In these and similar studies to follow, 81 division of the measured uplift of the stream terraces above modern stream grade by age of the uplifted deposit 82 containing the detrital charcoal provide the measure of uplift rate due to offset along the HFT. Fault displacement 83 rate is then assessed with assumption of the fault dip, which the few available direct measures place in the range 84 of $30\pm10^{\circ}$ (e.g., see Wesnousky, 2020). There now number about estimates of the rate of uplift at ~8 sites spaced 85 along the HFT resulting from the collaborative efforts of Indian, Bhutanese, Japanese, French, and USA 86 colleagues. The individual values of uplift rate determined from geology in this manner generally overlap with 87 and thus agree with the 15 ± 2 mm/yr rate of convergence measured by modern GPS analyses (e.g., Wesnousky, 88 2020). Critically important to assessing seismic hazard along the Himalayan Front, the rate provides a measure of 89 strain that is being accumulated each year along the decollement (MHT) that is ultimately released suddenly in 90 earthquakes, the largest of which produce scarps along the HFT.

Timing and Size of Past and Future Surface Rupture Earthquakes: Paleoseismology

92 The collection of geological observations to assess the timing and size of past and prehistoric offsets on active 93 faults is the substance of Paleoseismology. Along the Himalayan front and elsewhere around the globe the 94 approach most often entails the application of structural, stratigraphic, soil, and radiocarbon analysis to young 95 sediments deformed by fault displacement exposed in trenches excavated across active fault scarps. The earliest 96 documented study using the approach dates to study of the 1968 Borrego Mountain earthquake (Clark, 1972) and 97 subsequent excavations by Sieh (1978) across the San Andreas at Pallet Creek in California The first application 98 of the approach along the HFT was led by Takashi Nakata in the 1990s (Nakata et al., 1998; Upreti et al., 2000). 99 The brief abstract and conference proceedings that describe the work interpret the HFT to have produced surface rupture of 4 to 8 meters around 1200 AD. There now exist near 30 similar study sites the HFT as it strikes through 100 101 India, Nepal, and Bhutan (Figure 2). The resulting observations provide measures of surface rupture 102 displacements, the times of the displacements, and the potential length of HFT ruptures during these earthquakes. Taken together with measures of the HFT fault slip rate, the observations provide insight to the size of earthquakes 103 104 that can be expected in the future and when they may occur.

Drawing upon the recent summary and analysis of Wesnousky (2020), the vertical displacement producing scarps along the HFT during the most recent geologically recorded events commonly range between 5 and 10 meters. Given that available direct observations place the dip of the underlying fault at an average of 30°, the displacement required to produce scarps of this magnitude are calculated to be twice the vertical separation: 10 m to 20 m (**Figure 3**). Average displacements of 5 to 10 m are commensurate with earthquakes that extend several hundred kilometers and more along the Himalayan arc (**Figure 4**), with magnitudes greater than Mw~8.5

111 (Leonard, 2010). The estimated values of rupture length are yet much greater if the scarps are the result of displacements between 10 m and 20 m. Strong support for these large rupture lengths and magnitudes (Mw>8.5) 112 113 is also found in estimates of the timing of earthquake displacements interpreted from trench exposures. The 114 bracket of time between the youngest sample from deposits deformed by fault displacements and the oldest from 115 unbroken deposits in a trench is the event horizon: the range of ages bracketis when the displacement producing 116 the deformation occurred. The similar and overlapping event horizon ages at adjacent sites along the arc is consistent with ruptures reaching ~500 km and plausibly ~800 km, the same as suggested by the vertical separation 117 118 observed across numerous HFT fault scarps (Figure 5).

119 Modern GPS measurements tell us that slip is accruing on the Main Himalayan Thrust (MHT) at a rate of 120 15±2 mm/yr. The amount of slip accumulated and waiting to be released in an earthquake may be estimated by 121 multiplying the rate times the period of time slip has been accumulating, which is marked by the event horizons 122 shown for each site in Figure 5. It is found in this manner along the length of the Himalayan arc that the amount 123 of slip stored and awaiting release is now equal to or approaching the amount of slip that occurred in the most 124 recent earthquakes (Figure 6). The event horizon times viewed in this context tell us that the occurrence of 125 similarly great earthquakes in the not-so-distant future cannot be viewed as a surprise; accrued slip since the times 126 of last rupture is equal or approaching equal to the slip that occurred during the last earthquake.

127 Further reasoning that many of the scarps along the HFT are due to earthquakes of at least Mw~8.5 and very 128 possibly reaching Mw~9 can be drawn from the historical record of past earthquakes. Several great earthquakes 129 have been recorded historically along the HFT: the Mw>~8.6 ±.3 earthquake of 1505, the Mw 8.4 Bihar earthquake of 1934, and the Mw>~8.6 ±.3 Great Assam earthquake (e.g., Bilham, 2018). Each has been attributed 130 131 to have produced hundreds of kilometers of rupture along the HFT. Yet, to the authors reviews, there remains no 132 clear or definitive evidence that any of the events produced rupture of sufficient extent to reach the surface and 133 produce scarps along the HFT or elsewhere (Wesnousky, 2021; Wesnousky et al., 2018a). It follows that 134 earthquakes that have produced large scarps along the HFT are the result of events even larger than the great 1505, 1934, and 1950 earthquakes. 135

136 Today

137 Nakata's geomorphic study is that on which subsequent study of active faulting along the HFT has developed. 138 The development of paleoseismologic methods later provided the means to recognize the occurrence and size of 139 discrete earthquake displacements responsible for forming fault scarps. The ability to commonly assess the timing of the recognized displacements came with the concurrent development and application of Accelerator Mass 140 141 Spectrometry in radiocarbon dating of very small pieces of charcoal and organic matter preserved in displaced 142 deposits. The observations resulting from steady application of these approaches along the HFT over the last ~30 143 years are sufficient to confidently assert to the public that earthquakes in the past have produced surface ruptures reaching 10 - 20 m displacement along 300-500 km lengths of the HFT in earthquakes of magnitude certainly 144 equal to at least Mw 8.5 and even approaching Mw 9. The physical and human devastation along the Himalayan 145 146 front stands to be unmatched in recorded history when another of these events occur in the future. More sobering 147 is that the observations inform us that the occurrence of another such earthquake along the HFT in the near future, 148 be it next year or the next hundred, cannot be viewed as a surprise. Science and in significant part Paleoseismology 149 have served well to define the real hazard embodied in the future occurrence of great earthquakes along the HFT.

- 5
- 150 May this note serve as a reminder of K.S. Valdiya's call to public agencies to not ignore but rather ultimately
- 151 organize and develop approaches to mitigating this very real earthquake hazard.
- 152
- 153

154 Acknowledgements

- 155 Center for Neotectonic Studies Contribution #.
- 156 References
- Bilham, R., 2018. Himalayan Earthquakes: A Modern Synthesis. Geophysical Society of London
 Special Publication 18-122, in review.
- Bilham, R., Blume, F., Bendick, R., Gaur, V.K., 1998. Geodetic constraints on the translation and
 deformation of India: Implications for future great Himalayan earthquakes. Current Science 74,
 213-229.
- Clark, M.M., 1972. Surface rupture along the Coyote Creek fault, The Borrego Mountain earthquake
 of April 9, 1968. United States Government Printing Office, Washington, pp. 55-86.
- 164 Gansser, A., 1964. Geology of the Himalayas. Interscience Publishers, Inc.
- Isacks, B., Oliver, J., Sykes, L.R., 1968. Seismology and new global tectonics. Journal of Geophysical
 Research 73, 5855-&.
- Lave, J., Avouac, J.P., 2000. Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of
 central Nepal. Journal of Geophysical Research-Solid Earth 105, 5735-5770.
- Leonard, M., 2010. Earthquake Fault Scaling: Self-Consistent Relating of Rupture Length, Width,
 Average Displacement, and Moment Release. Bulletin of the Seismological Society of America
 100, 1971-1988.
- Lindsey, E.O., Almeida, R., Mallick, R., Hubbard, J., Bradley, K., H., T.L.L., Liu, Y., Burgmann, R.,
 Hill, E.M., 2018. Structural control on downdip locking extent of the Himalayan megathrust.
 Journal of Geophysical Research 123, 5625-5278.
- Molnar, P., Stock, J.M., 2009. Slowing of India's convergence with Eurasia since 20 Ma and it
 implications for Tibetan mantle dynamics. Tectonics 28, TC3001, doi:10.1029/2008TC002271,
 11pp.
- Molnar, P., Tapponnier, P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision. Science
 189, 419-426.
- Molnar, P., Tapponnier, P., 1977. The collision between India and Eurasia. Scientific American 236,
 30-41.
- Nakata, T., 1972. Geomorphic history and crustal movements of the foot-hills of the Himalayas. Sci.
 Rep., Tohoku Univ, 7th Ser, 22, 39-177.

- 6
- Nakata, T., 1989. Active faults of the Himalaya of India and Nepal. Geological Society of America
 Speical Paper 232, 243-264.
- Nakata, T., Upreti, B.N., Kumahara, Y., Yagi, H., Okumura, K., Rockwell, T.K., Virdi, N.S., 1998.
 First successful paleoseismic trench study on active faults in the Himalaya. EOS, Trans. 79, F615.
- Seeber, L., Armbruster, J., 1981. Great detachment earthquakes along the Himalayan arc and long-term
 forecasting, in: Simpson, D.W., Richards, P.G. (Eds.), Earthquake Prediction: An International
- 190 Review. AGU, Washington, D. C., pp. 215-242.
- Sieh, K.E., 1978. Prehistoric large earthquakes produced by slip on San Andreas fault at Pallett Creek,
 California. Journal of Geophysical Research 83, 3907-3939.
- 193 Stein, R.S., Yeats, R.S., 1989. Hidden earthquakes, p. 30.
- 194 Thakur, V., 2003. Research contributions of D N Wadia. Resonance 8, 65-75.
- Upreti, B.N., Nakata, T., Kumahara, Y., Yagi, H., Okumura, K., Rockwell, T.K., Virdi, N.S., 2000. The
 latest active faulting in Southeast Nepal, Proceedings of the Hokudan International Symposium and
 School in Active Faulting, Awaji Island, Hyogo Japan, p. 533–536.
- 198 Valdiya, K.S., 1980. Geology of Kumaun Lesser Himalaya. Wadia Institute of himalayan Geology.
- 199 Valdiya, K.S., 1984. Aspects of tectonics: Focus on south-central Asia. Tata-McGraw-Hill.
- Valdiya, K.S., 1992. Must we have high dams in the geodynamically active Himalayan domain. Current
 Science 63, 289-296.
- Valdiya, K.S., 1993. Latur earthquake of 30 September 1993: implications and planning for hazard preparedness. Current science (Bangalore) 65, 515-517.
- 204 Valdiya, K.S., 2001. Public policy for natural hazard management. Current Science 80, 486-487.
- Valdiya, K.S., 2005. Need for National Commission on Hazard Management. Current Science 88, 211206 211.
- Valdiya, K.S., 2014. Damming rivers in the tectonically resurgent Uttarakhand Himalaya. Current
 Science 106, 1658-1668.
- Valdiya, K.S., 2015. Environmental Geology: Ecology, Resource and Hazard Management, Second
 edition. McGraw-Hill.
- 211 Wadia, D.N., 1919. Geology of India. Macmillan, London.
- Wesnousky, S.G., 2020. Great pending Himalayan earthquakes. Seismological Research Letters 91,
 3334-3342.
- Wesnousky, S.G., 2021. Paleoearthquake magnitude detection limit along the Himalayan Frontal
 Thrust. Himalayan Geology submitted this volume.
- Wesnousky, S.G., Kumahara, Y., Nakata, T., Chamlagain, D., Neupane, P., 2018a. New Observations
 Disagree With Previous Interpretations of Surface Rupture Along the Himalayan Frontal Thrust
- 218During the Great 1934 Bihar-Nepal Earthquake. Geophysical Research Letters 45, 2652-2658.
- Wesnousky, S.G., Kumar, S., Mohindra, R., Thakur, V.C., 1999. Uplift and convergence along the
 Himalayan frontal thrust of India. Tectonics 18, 967-976.

224 Figure 1. (a) Among the major structural elements of the Himalaya are the three major thrust faults that are largely continuous along the ~2500km long Himalayan arc: the Main Central Thrust (MCT), Main Boundary 225 226 Thrust (MBT) and Himalayan Frontal Thrust (HFT). Areas of greatest shaking during great earthquakes of 20th 227 century are shaded and labeled with year. Inset illustrates on-going convergence between the Indian and Eurasia 228 is ~40 mm/year. (b) Simplified cross section showing the Himalayan frontal thrust (HFT), the Main boundary 229 thrust (MBT), and the Main Central Thrust (MCT) each soles into the shallow dipping Main Himalayan Thrust (MHT) decollement. Great earthquakes along the Himalaya are considered to be the result of displacement on the 230 231 MHT. Figures adapted from Seeber and Armbruster (1981) and Kumar et al. (2006)

Figure 2. There now exist ~30 sites along the Himalayan Front where an international community of scientists have employed geologic principles to estimate the timing and size of past surface ruptures and the average rate of slip along the Himalayan Frontal thrust. (Citations of each study recorded in Wesnousky (2020).

- 238
- 239

Figure 3. The vertical separation reported across fault scarps produced by the most recent displacement on the Himalayan Frontal Thrust (HFT) are commonly between 5 m and 10 m. The amount of slip on the HFT to create the vertical separation may actually be twice that (10 m to 20 m) when considering the dip of the HFT may be as low as 30° beneath the studied scarps.

- 245
- 246

Figure 4. The rupture lengths of earthquakes that would on average be expected to produce the vertical separations observed across scarps at sites along the HFT are commonly between 300 km and 500 km, and significantly greater if the displacement producing the scarps is result of slip on a thrust that dips 30°.

252

253

254

Figure 5. Paleoearthquake studies place limits on the timing of the most recent surface rupture earthquakes along the HFT. The overlapping event horizon ages determined at adjacent sites are plausibly due to the same earthquake with rupture lengths of 500 to 800 km (green bars).

Figure 6. The amount of slip accrued since the time of displacement is now approaching or equal to the amount of slip registered in the last earthquake at sites studied along the HFT. The repeat of similar large earthquake displacements at any time in the future should be anticipated and if possible planned for.