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Introduction

Over the last 1 Ma, the Lake Lahontan basin has been the locus of at least five
major lake cycles (Morrison, 1991; Reheis, 1996, this volume). Although many
researchers have studied the deposits and lacustrine landforms of the Basin, there has been
little agreement as to the age of the highest shoreline features. The debate centers around
whether the high shoreline dates from the most recent cycle (Sehoo period) at about 12.7
ka or from the penultimate lake cycle (Eetza period) at about 130 - 350 ka.

I.C. Russell (1885), who accomplished the seminal work on Lake Lahontan,
maintained that the uppermost shoreline, which he termed the Lahontan Beach, dated from
the most recent lake cycle. Jones (1925) and Antevs (1925) agreed with this interpretation.
However, Morrison (1964; 1991) claims that the highest shoreline in the southern Carson
Desert area dates from Eetza time. More specifically, Morrison (1991) supports that the
high shoreline there dates from the middle Eetza highstand which he estimates to be about
280 ka. This is in contrast to the Pyramid Lake subbasin where Benson (1993) has
interpreted features related to the high shoreline to date from ~13.5 ka, or the Sehoo
highstand. Based on key soil exposures in the northern subbasins, Mifflin and Wheat
(1971, 1979) postulated that the age of the highest shoreline in the northern part of the
Basin dated from Sehoo-time whereas the age of the highest shoreline in the southern part
of the Basin dated from Eetza-time. They called upon regional, down to the north tilting
during the Eetza-Sehoo interpluvial period to explain this relationship.

Determination of the age of the highest shoreline from throughout the Lahontan
Basin is important in light of our current effort to determine the isostatic rebound of the
Basin resulting from the desiccation of the most recent highstand lake (Adams and
Wesnousky, 1994). In order to do this, we needed to be reasonably sure that we were
measuring the elevations of the highest constructional shore features dating from the Sehoo
lake cycle throughout the Basin. Therefore, we adopted a somewhat simple strategy for
determining the age of the high shoreline. We have employed both numerical and relative
age-dating techniques to date particular constructional high shoreline features and their
associated soils. We then correlated the soil development of these features to other undated
high shoreline localities (Adams and Wesnousky, 1995; 1996). For comparison of relative
soil development, we have also described a number of paleosols related to pre-Sehoo lake
cycles to further test our conclusions about the age of the high shoreline.

Pre-Sehoo pluvial lake deposits and landforms residing well above the Sehoo limit
have long been recognized in the Walker Lake subbasin (e.g. Russell, 1885; King, 1993).
Marith Reheis is currently studying these features and deposits (see Reheis, 1996, this
volume) and has identified some super-elevated lacustrine deposits in the northern
subbasins of Lake Lahontan. We recognize that the existence of earlier Pleistocene
lacustrine deposits above the late Pleistocene limit complicates our task somewhat and
muddles our definition of "highstand". However, we emphasize that the late Pleistocene
deposits and landforms are readily distinguishable both in the field and on aerial



photographs in terms of better development, continuity and preservation. Therefore, when
we use the term "highstand" we are speaking of the readily identifiable upper limit of
prominent shorelines found throughout the Basin which were likely formed in the last
(Sehoo period) or penultimate (Eetza period) lake cycles.

Methods

The relative development of 27 soil profiles located on high shorelines from
throughout the Basin were compared in order to test the hypothesis that the high shoreline
of Lake Lahontan dates from more than one lake cycle (Figure 1). Seven additional profiles
developed on regressive barriers post-dating the Sehoo highstand at 12.7 ka but older than
about 11 ka were also used for comparison. To assess the degree of development of
demonstrably pre-Sehoo soils and to compare these to the highstand soils we described
and sampled seven more profiles located from descriptions in the literature (i.e. Morrison,
1991; Morrison and Davis, 1984) and from our own travels in the Basin (Figure 1).

Field descriptions of soil profiles included color, texture, structure, consistence,
reaction to dilute HCL, root distribution, and the presence and character of clay films and
pores. The surficial geology of each site was also described in terms of 1) the type of beach
feature in which the soil developed, 2) lithology, rounding and sorting of clasts on surface
and at depth, 3) development of desert pavement and rock varnish, 4) degree of dissection
or other surficial modifications, 5) aspect, 6) slope, 7) vegetation, 8) amplitude of beach
feature and, 9) direction of net shore drift. In general, soil pits were excavated on the flat or
gently sloping (< 1°) crests of constructional beach features such as spits, barriers and
tombolos. Constructional beach features are ideal locations to examine soil development
due to their relative stability resulting from their positive relief with respect to the
surrounding landscape.

The paleosols used in this study for comparison with the highstand soils were
formed on deposits of diverse sedimentary environments (i.e. multiple parent materials)
and may not date from the same period. The two paleosol profiles at Wadsworth
Amphitheater and Rye Patch Dam (Figure 1) were located from the literature and are
developed in fluvial deposits of the Wyemaha Alloformation (AF) which post dates the
Eetza AF, but predates the Sehoo AF (Morrison, 1991; Morrison and Davis, 1984).
Considering that the last highstand of the Eetza lake cycle was at about 130 ka (Morrison,
1991) and that the Sehoo lake did not begin to rise until approximately 30 ka (Benson et al,
1995), sediments mapped as the Wyemaha AF in different areas may have been deposited
over the span of as much as 100,000 years. Consequently, soils developed on these
deposits may differ by tens of thousands of years. In addition, the Wyemaha AF in the
Wadsworth Amphitheater consists of coarse sand and gravel, whereas the Wyemaha AF at
Rye Patch Dam predominately consists of well-sorted fine to medium sand. Thus, the
variation in parent materials may also have contributed to the differences in soil
development at this site.

The two pre-Sehoo surface soils described at the Thorne Bar on the southeast side
of Walker Lake (Figure 1) are developed in coarse clastic beach deposits, but their absolute
age 1s unknown. The paleosol at Jessup is developed in coarse clastic beach deposits and is
overlain by Sehoo shore deposits. The two remaining paleosols, in Quinn River Valley and
at Grimes Canyon (Figure 1) are also both developed in coarse clastic beach deposits and
are buried by 2 and 9 m of highstand beach deposits, respectively. These last two paleosols
are the best developed of all the soils described in this study.

The ages of thirteen of the profiles used in this comparison are known or can be
closely approximated. The highstand barrier that fronts the Jessup Playette dates from



about 12.7 ka (Adams and Wesnousky, 1996a, this volume). We described and analyzed
five separate profiles across the barrier and into the playette as well as two additional
profiles from a separate soil pit on the crest of the barrier (Figure 2). The three profiles
described in the trench across the crest of the Jessup Playette barrier serve as a micro-
catena with which to assess the influence of topographic position on soil development on a
single-age surface. Seven additional soil profiles were described on four regressive barriers
which postdate the Sehoo highstand but are probably older than about 11 ka (Figure 3)
(Curry, 1988; Benson et al, 1992). Soils were described on these regressive barriers to
determine whether or not there was a systematic change in the degree of soil development
on progressively younger and lower barriers. We also obtained a 36Cl surface exposure age
of < 15 ka (Fred Phillips, 1995, written comm.) and soils data for a highstand feature in the
Lahontan Mountains (Figure 1 and Table 3, Site F-19) that Morrison (1964) had mapped
as part of the Eetza AF.

In addition to field descriptions of all 41 soil profiles compared in this study,
particle size analyses were conducted for eight highstand profiles, seven regressive Sehoo
profiles, two Churchill profiles and two profiles developed on the Holocene-age surface of
Jessup playette. Particle size analyses for the remaining twenty eight profiles are still
pending.

Results

The results section is organized in the following manner: first, descriptions and
particle size analyses for soils from the Jessup Playette and its associated barrier are
presented in Table 1. Next, soils data for regressive barriers in the Jessup Embayment are
presented in Table 2. Third, soils data for highstand soils from around the Lahontan basin
are presented in Table 3 and last, soils data for pre-Sehoo soils are presented in Table 4.
Interpretations and correlations are presented in the Discussion section.

Discussion

Due to natural variations in soil development factors, each soil profile in this study
is different. However, in a gross sense we submit that the soils described in this study can
be separated into two main groups. The first group encompasses all of the soils developed
on highstand features throughout the Basin and the soils developed on regressive Sehoo
barriers in the Jessup Embayment (Figure 1; Tables 1, 2 and 3). We interpret these soils to
have developed on highstand and regressive features formed during the Sehoo Lake cycle
which reached its highstand at about 12.7 ka (Adams and Wesnousky, 1996a, this
volume). The second group encompasses all of the soils that are demonstrably older than
the Sehoo Lake cycle. As stated in the methods section these older soils are not necessarily
the same age.

There is a certain amount of variability in terms of soil properties within each major
group of soils. Considering that Jenny (1941) defined five factors which influence soil
development, variability between profiles is to be expected even if they are the same age,
because time is just one of the five soil forming factors. The other four factors are
topography or relief, parent material, organisms (both plant and animal) and climate
(Jenny, 1941). Each of these five factors can significantly influence soil development and
will be discussed in terms of how they might be responsible for the spatial variability
observed in the Sehoo-age soils.

In this study, soil profiles from the late Pleistocene high shoreline were all
examined on the crests of constructional features such as spits, barriers and tombolos.
Hence, all of the sites tend to be well-drained and have deep ground water. Most of the



features are composed of coarse clastic beach material, but some are composed primarily
of sand with minor amounts of gravel. The difference in size and sorting of parent material
can influence depth of wetting and water retention which in turn can influence the type and
density of vegetation found on a particular landform.

Coarse clastic beach features are different than adjacent contemporaneous alluvial
fans in terms of initial character and particle size distribution, hence soil development also
differs. Alluvial fans are commonly poorly sorted with grain sizes ranging from clay
through boulders (Blair and McPherson, 1994). However, in the Lahontan basin, beach
features tend to be composed of well-sorted, clast-supported, coarse clastic sediment with
more or less sand forming a matrix between the larger clasts. Tables 1 and 2 show the
particle size distributions for eleven C horizons from barriers in the Jessup Embayment
that appear to be dominated by sand. However the particle size distributions only reflect the
< 2 mm size fraction (fine earth fraction). In actuality, the majority of C horizons
(excluding Lower barrier 4 and the two Playette profiles) are composed of greater than
90% gravel and cobbles, with the fine earth fraction accounting for <10% of the total
volume of material. When considering the silt and clay sized fractions in comparison to the
total particle size distributions of the C horizons, only a very small percentage (< 1) is
comprised of clay and silt (Tables 1 and 2).

It has long been recognized that the addition of eolian dust significantly influences
soil development in many different climatic regimes (Yaalon and Ganor, 1973; Peterson.,
1980; Machette, 1985; McFadden and Weldon, 1987). In semiarid and arid areas, eolian
dust influx constitutes a major soil forming process (Reheis et al, 1995). The late
Pleistocene soils developed on Sehoo-age features are no exception.

The A and B horizons of the highstand profiles as well as the regressive Jessup
profiles contain considerable amounts of fine sand, silt and clay (Tables 1, 2 and 3). There
is little evidence of clast weathering in these profiles, therefore we concur with the
conclusions of Chadwick and Davis (1990) that virtually all of the fine earth fraction
contained in the vesicular A horizons, and most in the underlying B horizons, came from
atmospheric sources. Additional evidence in support of an eolian source for the fines
includes the common, discontinuous loess blankets that are found on many beach features,
especially around the bases of bushes. Chadwick and Davis (1990) introduced the idea that
rapid soil formation resulted from temporally limited eolian pulses that they associated
with desiccation of the Lake. They also postulated that the degree of soil development has a
positive correlation with the amount of upwind playa surface. This idea is exemplified by
observations within the Carson Sink where huge plumes of dust are blown north from the
surface during spring wind storms. Soils developed on the north side of the Carson Sink
are better developed than soils on the south (downwind) side (Chadwick and Davis, 1990).

The amount of calcium carbonate accumulation in soils is commonly used as a
relative age indicator (Gile et al, 1966; Machette, 1985). This approach assumes that most
of the carbonate is introduced by the addition of calcareous dust. The commonly calcareous
Av horizons in the Lahontan basin support this idea. However, when examining soils
developed in Lahontan beach gravel, the amount of carbonate present is not a reliable
indicator of age. The waters of Lake Lahontan contained a great deal of dissolved
carbonate, as evidenced by the amount of tufa and cemented beach rock within the Basin.
In stream cuts and artificial exposures, tufa or carbonate coated clasts often extend many
meters into the deposit. In the soil forming zone, carbonate is often preferentially
concentrated on the undersides of clasts, indicating that the carbonate is affected by soil
forming processes. Because much of the carbonate was already present in the parent



material (beach gravel) and not due to the slow addition of calcareous dust, the amount of
carbonate in a soil profile should not be used to estimate the age of the soil.

Soil development on highstand and regressive barriers in the Lahontan basin is
greatly influenced by bioturbation, primarily in the form of rodent burrowing. This effect is
readily seen in the Jessup Playette trench (Figure 2) where soil development across the
crest of the barrier seems to closely track the depth of rodent burrowing. Near the southeast
end of the trench there is a zone of coarse (< 25 cm) disc-shaped cobbles that appear to
have limited the depth of rodent burrowing. Consequently the profile developed in this area
is relatively thin.

The location and density of plants also influences soil development, at least
indirectly. Surface vegetation acts as a surface roughness element by trapping eolian
material around the bases of plants. Rodents often burrow near the bases of bushes thereby
increasing the amount of fines mixed into the profile beneath the bushes. Salt brush is a
common constituent of vegetation communities growing on beach features. Peterson
(1980) reports that sodium-influenced soils can rapidly develop Bt and even argillic
horizons. The concentration of sodium in the leaves of these salt bushes may influence the
rate of clay translocation directly beneath the plant. As the plant continues to grow and drop
leaves on the ground beneath it, the sodium in these leaves may be incorporated back into
the soil causing a local increase in the rate of clay translocation. Evidence for this process is
seen where Bt horizons locally thicken beneath individual bushes. As discussed above,
variation in the thickness of the Bt horizon may also be due to rodent burrowing.

The high shoreline of Lake Lahontan extends through about 3° of both latitude and
longitude. As a result, there are climatic gradients within the Basin which have probably
affected soil development. However, we do not yet have a clear understanding of how
these gradients have changed through time or what their influence has been on soil
development.

Pre-Sehoo Soils

The demonstrably older than Sehoo soils described in this study are all better
developed than the Sehoo surface soils. The two best developed profiles are those at
Grimes Canyon and in Quinn River Valley (Figure 1, Table 4). These soils are developed
in coarse clastic barrier gravels, much like the younger surface soils. However, their
thickness, amount of clay accumulation, structural grade, consistency and color all indicate
that these soils represent development over a much longer period of time than do the
surface soils. If these older soils are developed on Eetza deposits then they may be as old
as 140 ka or 280 ka (Morrison, 1991). Considering the ubiquitous influence of dust on the
younger surface soils, it is not unreasonable to consider that the older soils were also
greatly influenced by the introduction of dust. However, once the dust was incorporated
into the older profiles it may have had time to chemically weather and dramatically change
the character of the soils.

The two pre-Sehoo surface profiles at the Thome Bar (Figure 1) are apparently not
as well-developed as some of the other paleosols (Table 4). However, it is possible that
these soils have been somewhat stripped. The original morphology of the landforms is still
present, but appears somewhat muted.

Conclusions
The soil correlations made in this study imply that the highstand barriers found

throughout the Lake Lahontan basin date from the Sehoo lake cycle. This is in contrast to
the conclusions of Morrison (1964; 1991) regarding the age of the highstand in the



southern Carson Sink. Soil formation on Sehoo-age beach features is largely a product of
the introduction of dust into generally coarse clastic deposits. Spatial variability in soil
development appears to be influenced by bioturbation and also the distribution of
vegetation. Spatial variability due to the proximity of the profile to dust sources (i.e. playas)

is still under investigation.
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Figure 1- Location map of the Lake Lahontan basin at its last highstand at about
12.7 ka. Black dots are locations of existing soil pits and field reconnaissance
descriptions. Circled black dots are locations of paleosols associated with beach
deposits and younger soils. Circled inverted triangles are locations of paleosols
not associated with beach deposits. Boxed labels are soil profiles that have been
fully described, sampled and analyzed in the lab.
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Figure 3. Sketch map of the Jessup Embayment showing the locations of soil profiles with respect to
beach barrier features.



