Review

Fault Slip Rates and Earthquake Histories for Active Faults in Southern California

by Mark D. Petersen¹ and Steven G. Wesnousky

Abstract Within the context of the historical record of seismicity, we review the geological data bearing on the Quaternary slip rates and paleoearthquake histories of active faults in southern California.

Introduction

Fault slip rate and paleoearthquake data now commonly form the foundation for seismic hazard analysis. As part of the Southern California Earthquake Center's effort to characterize seismic hazard in southern California, we have compiled published information bearing on the Quaternary slip rate and paleoearthquake histories of active faults in southern California. Reports of such data are scattered among a myriad of sources, ranging from brief abstracts and little-reviewed guidebook articles to the more rigorously reviewed professional reports and articles. As a result, the data are not always conveniently accessed by the interested investigator. Toward both precluding a duplication of effort by others and providing a benchmark of progress in paleoearthquake and fault slip rate studies to date, we present our compilation here and place it within the context of the historical record of seismicity along each of the faults considered.

The location of each fault slip rate or paleoearthquake study is indicated in Figure 1. The label at each site corresponds to the abbreviated description in Table 1 of both the results of the study and reference to the original report describing the site. Table 1 lists the location of the study, the geologic feature offset by the fault, the method used to date the offset feature, the amount of offset and the respective investigator's estimate of the fault slip rate, and, when available, dates of paleoearthquakes. For convenience of presentation, studies along the San Andreas, San Jacinto, Whittier-Elsinore, Newport-Inglewood, Palos Verdes, and Rose Canyon faults and active faults within the Transverse Ranges, Mojave Desert, and Continental Borderlands are grouped and accorded separate discussions. For each fault or region, discussion of the fault slip rate and paleoearthquake studies is accompanied by a description of historical seismicity, including maps and cross sections of the past 50 yr of seismicity and aftershock zones of the largest historical earthquakes.

The Southern San Andreas Fault

Mojave Segment

Historical Seismicity. For convenience of presentation, we define the 150-km section of the fault between Tejon Pass and Cajon Pass as the Mojave segment (Figs. 2 and 3). Surface ruptures during the great 1857 earthquake extended from northwest of Tejon Pass to a point between Wrightwood and Cajon Pass. The amount of coseismic offset during 1857 ranged between about 3 and 4 m along this section of the fault (Sieh, 1978b), although up to 6 m was found near Pallett Creek when the effects of paleomagnetically determined warping were included (Salyards, 1989; Salyards et al., 1987, 1992). Tree ring analysis near Wrightwood also suggests that an M 7.5 earthquake ruptured part of the Mojave section of the San Andreas in 1812 (Jacoby et al., 1988). Recent seismicity (1932 through 1992), however, is quite sparse along the Mojave segment [e.g., Hill et al., 1990; Fig. 2]. Cross sections of seismicity since 1981 along the fault indicate that earthquakes extend to depths of about 15 km (Fig. 4).

Fault Slip Rate Data. A slip rate of about 9 mm/yr was initially reported by Sieh (1984) for the Mojave segment based upon stratigraphic offsets observed across the fault in a trenching study. Later paleomagnetic studies at the same site by Salyards et al. (1987, 1992) and Salyards (1989) indicate that the 9 mm/yr significantly underestimates the fault slip rate at this site because it does not take into account warping of the sediments adjacent to the trench. After correcting for warping of the sediment by analysis of paleomagnetic rotations, Sal-

¹Present address: California Division of Mines and Geology, Sacramento, California.

yards et al. (1992) reinterpreted the Sieh (1984) study to indicate 36 ± 7 mm/yr of slip. Schwartz and Weldon (1987) reference another study in abstract form of an offset stream channel near Little Rock that was used to place a limit of 16 to 38 mm/yr of slip along the Mojave segment during the past 3,500 yr.

For comparison, alignment array surveys dating back to the mid-1960s indicate a segment of the fault near Parkfield, located north of the Mojave segment, creeps seismically at about 32 mm/yr (Burford and Harsh, 1980). Sieh and Jahns (1984) also studied the offset of Wallace Creek to estimate a 33.9 \pm 2.9 mm/yr late Holocene slip rate within the Carrizo Plain: In addition, geodetic studies of the Los Padres–Tehachapi network indicate a slip rate of 30 \pm 6 mm/yr near Tejon Pass (Eberhart-Phillips *et al.*, 1990).

Paleoearthquake Data. Examination of stratigraphic and structural relationships exposed in trenches has resulted in recurrence interval estimates for the San Andreas fault near Pallett Creek. At Pallett Creek, Sieh et al. (1989) place the average recurrence interval between the latest

10 episodes of faulting at 132 yr, although the variability about the mean is quite large and indicates an irregular recurrence pattern. Ongoing studies at Wrightwood, only 30 km along strike from Pallett Creek, also show a similar average recurrence interval since about 1470 A.D. but suggest that Wrightwood and Pallett Creek may not always rupture simultaneously during the same earthquake (Weldon, 1991; Weldon et al., 1989; Fumal et al., 1993).

Southern San Andreas

Historical Seismicity. The southern San Andreas is defined here as that section extending from near Cajon Pass in the north to Bombay Beach in the south (Figs. 2 and 3). The trace of the San Andreas is complex where it splays into the subparallel strands of the Mission Creek, San Gorgonio Pass, and Banning faults. At least $10 \, M > 5.0$ events have occurred in the vicinity of San Gorgonio Pass since 1935 (Richter et al., 1958), the largest being the 12 December 1948 Desert Hot Springs earthquake (M_L 6.5) and the 3 July 1986 North Palm Springs

Figure 1. Map showing sites of slip rate studies in southern California for the San Andreas (SA1-14), San Jacinto (SJ1-13), Elsinore—Whittier (E1-8), Newport—Inglewood (N1-3), Palos Verdes (N4-6), Rose Canyon (N7), Transverse Ranges (T1-50), Mojave (M1-6), and Garlock (G1-9) faults.

San Andreas

(SA14)

Cajon Pass

34.25/ 117.43

will define out my country Still grathed to abbourged by grant (4881) deid on bate Table 1. Conshore Southern

vido anors			Fault	nation.	Slip (m)	- Hou	Age of Offset	eda ni vbu	Slip Rate (mm	/yr)
Fault	Location	Lat/Lon		Mn	Mx	Pr	(kyr)	Mn	Mx	nen in Pr ima i
San Andreas Fau	ılt Zone	lavredni	nonum	Lasti A	fine avera	-1252	ng the Moleve	ole offiz to	ry\min 8f c	u d l'io mui
San Andreas (SA1)	Elder Gulch	34.13/ 117.17	RL	30	50		en ret e jorner		25	
San Andreas (SA2)	Three Points	34.74/ 118.56	RL	14	123		1.84 to 2.4	5.8	67	48
San Andreas	Pallett Creek	34.46/	RL	10		10100	period		or all the second	9
(SA3)		117.89		EF H.			between 735 and	Hollieff o		isotechily all a eb and I chn
San Andreas (SA4)	Pallett Creek	34.46/ 117.89	RL	15.9	20.8	18.0	1857 A.D. period between	30.1	42.1	35.2
ali i i de la composición del composición de la composición del composición de la co		3 a9141. 3 4 3	011254 / 6 /1254				1346 ± 17 A.D. and			odi se zaibu
d aredia ko	tolatop si esc	alina ne	a self			7-1	1857 A.D.			
San Andreas (SA5)	Little Rock	34.5/ 118.0	RL		ini yako	19	1.0 to 1.2	16 to 19	7	
		and a			<130		3.5 ± 2.2	Action (Disk)	38	m-ibititingstate
San Andreas (SA6)	Bitterwater Valley	36.4/ 121.0	RL				1967 to 1970 A.D.	n a physic		33
	gë miljeta. 9 maj kato						() in we do ()		ogliki dini	Outsilled has
San Andreas	Wallace Creek/	35.27/	RL	127	129	128	3.7 ± .16	31	36.8	33.9
(SA7)	Carrizo Plain	119.83		472	478	475	13.25 ± 1.65	31.7	41.2	35.8
San Andreas (SA8)	Pallett Creek	34.46/ 117.89	RL			113	13.23 = 1.03	SI.7	41,2	33.6
	A.									beregh Te
		and the second of		7.					/1	
A STATE OF THE STA	ach ey e							and Sky a		moral fo
San Andreas (SA9)	Wrightwood	34.35/ 117.60	RL				6			i iglabi. i
		7 /Sw.	1		SAS SAS SAS SAS					
San Andreas	Cajon Pass	34.25/	RL	220	200	250			THE WE	JA 1997
(SA10)	Cajon I ass	117.43	, KL	320 280	380 320	350 290	14.4 ± 1 12.4 ± 1	20 21	28 28	24 25
		TIAL	Ale	180	235	200	8.35 + .95 to 0.5	19	30	24
		>		140	45 010 000 -	102	5.9 ± 0.9		A	T coupy par
an Andreas	Yucaipa	34.1/	RL	140 250	150 350	145 300	14 to 18	21	31	25 14 to 25
(SA11)		117.0				670 1040	20 to 30 69 to 90			22 to 34 12 to 16
an Andreas (SA12)	Indio	33.7/ 116.2	RL	21	4.7		between 1000 and 1700 A.D.	30		P STATE OF THE STA
an Andreas (SA13)	Coachella Valley	33.4/ 115.8	RL				since 1700 A.D.			2 to 4 (creep)
							an emellored			The state
						29 1				ang USN 4

California Slip Rates

Historical and Paleo				1.224
Earthquakes	Offset Feature	Dating Method	Reference	not not led Comments
T. J. China.			Pariet er	the figure on the second point with the second
	stream channels	soil development	Clark et al. (1984)	Reported from Rasmussen (1982). Geologic, stratigraphic, and soil age data are not documente
	landslide	¹⁴ C	Clark et al. (1984)	in the Rasmussen study. Reported from Rust (1982a, b)
Stanfil t	stream and marsh deposits	history and ¹⁴ C	Sieh (1984)	Rate is considered a minimum by authors because of considerable folding of sediments observed adjacent to fault trace.
	stream and marsh deposits	¹⁴ C	Salyards <i>et al</i> . (1987)	Paleomagnetism used to account for slip accommodated by warping rather than faulting
			Salyards (1989) Salyards et al. (1992)	(Sieh, 1984).
	stream offset	¹⁴ C	Schwartz and Weldon (1987)	Only documented in abstract form.
	channel fill deposit	¹⁴ C	Welden (1907)	
	alignment array	calendar	Burford and Harsh (1980)	Displacement of alignment arrays from 30 to 200 m in length. Arrays located between endpoints of 1906 and 1857 surface ruptures. Lesser values of
				creep recorded at points closer to the 1906 and 1857 ruptures.
	offset stream	14 C	Sieh and Johns (1984)	ř
	alluvial fan offset	¹⁴ C		
January 1857, December 1812	stream and marsh deposits	14C 69 85	Sieh et al. (1989)	Note that date of 1812 earthquake argued on basis evidence from tree rings reported by Jacoby et a.
465 to 1495 A.D. 329 to 1363 A.D.				(1988).
035 to 1165 A.D. 015 to 1081 A.D. 81 to 1013 A.D.				
75 to 919 A.D.				
21 to 747 A.D. 58 to 684 A.D. efore 529 A.D.				lacine and Valley 33 a 7 RR 173 RR 173 RR
to 10 events during last	peat, sand, gravel	¹⁴ C	Fumal et al.	Ongoing study only reported in abstract and summa
1300 yr, including 9 January 1857 and 8	and debris	C. A. sapil	(1993) Weldon (1991)	form.
December 1812			Weldon et al. (1989)	
	terrace risers	¹⁴ C	Weldon and Sieh (1985)	
			a astronomic	Section 1. Lower Book to Visit 1995 (1995) Section 1995 (1995) (
	alluvial fan offsets	soil development	Harden and Matti (1989)	The bounds on slip rate recorded here are preferred values. Authors note that slip rates up to 35 to 6 mm/yr during the last 14,000 yr are permissible by the data.
020 ± 20 A.D. 300 ± 90 A.D. 450 ± 150 A.D. 680 ± 40 A.D.	lacustrine and fluvial beds	¹⁴ C	Sieh (1986)	Other slip events during the period may not be detectable because deposition at the site has beer sporadic. Creep at this site since 1700 A.D. has been about 2 to 3 mm/yr.
13 as	geological deposits, man made structures,	history	Sieh (1986) Sieh and Williams (1990)	Authors suggest that rate reflects creep only in upp few kilometers of crust. Higher slip rates are indicated by wide-aperture geodetic measurement
	alignment arrays, creep			
to 4 events between 1290 and 1805 A.D.	meters marsh deposits, scarp breccias		Weldon and Sieh (1985)	Evidence is cited as tentative, but suggests 1.5 to 2 century return time. Several places in mapped ar where ~4 m of offset can be measured on young
				geomorphic features.

Table 1—Continued. Onshore

			Fault	Slip (m)		Age of Offset	SI	ip Rate (m	m/yr)
Fault	Location	Lat/Lon	Type	Mn Mx	- Profile	Age of Offset (kyr)	outs Mn seltO	Mx	enlaupshup Pr
	Wrightwood			Cark etal. (1984) (23	TRACTO	gold>). Has	aloguero meats	15 *	
San Andreas (SA16)	Indio				.· 700 🗇	20 to 70	denun 10 0 mma)? etizielek	35	23 to 35
e godinal		y yet lighter							
San Jacinto and San Jacinto (SJ1)	Imperial Fault Zo Lower Lytle Creek	34.20/ 117.43	RL V	125 5		50 to 60		2 to 2.5	
San Jacinto	San Bernardino	34.10/	RL	3.5 6		≦1931 ± 109	1.7	3.3	
(SJ2) San Jacinto	near San	117.28 34.03/	RL	- 4	0.6 to 0.7	B.P. 50 to 100	deposit.		0.6 to 1.3
(SJ3) San Jacinto	Bernardino near San	117.25 34.0/	RL	12 km	km	$0.7 \pm .2 \text{ m.y.}$	>13	>24	>17
(SJ4) San Jacinto	Bernardino Anza	117.2 33.5/ 116.7	RL	85 ± 10		9.5 ± 1			>9.2 ± 2
(SJ5)		110.7		120 180 180 230	150 210	14 ⁺⁷ -5 17 ⁺⁹ -6	7	20 21	11 12
San Jacinto	Anza	33.5/	RL	580 660	620	50^{+9} -6 28.65 ± 0.98	is the naturalis	23 18	13 ·
				48		4.29 + 0.51/	10		December 1812 465 to 1885 A.D. 329 to 1864 A.D. 035 to 1861 A.D. 015 to 1081 A.D. 81 to 1013 A.D.
						-0.32 9.5	7	11	75 to 919 A.D. 21 to 747 A.D.
San Jacinto (SJ7)	Anza Valley	33.57/ 116.65	RR	5.7 km		<730	8		>12
San Jacinto (SJ8)	Hog Lake near Anza	33.5/ 116.7	RL Filtri	Textist at all (1992) (1992) Weldon (1994) Waldon et al.		<1.2 ⁺⁶ -1.8 kyr A.D.			to 15 events during 1300 yr, including January 1857 and December 1865
San Jacinto (SJ9)	Lower Borrego Valley	33.1/ 116.05	RR	10.9		4.5 to 6,5	1.4	2.0	
San Jacinto (SJ10)	Lower Borrego Valley	33.1/ 116.05	RR	PERMAN	1.3	265 to 500 yr	2.7	5.0	
San Jacinto/ Coyote Creek	Old Kane Spring Road	33.1/ 116.1	RL _E			3080 ± 600 to 860 ± 200 A.D.			
	ng the petent and in less than at the si per size of the size and size.								020 ± 20 A.D. 300 ± 90 A.D. 450 ± 150 %.D. 680 ± 40 A.D.
San Jacinto/ Superstition Hills (SJ12)	Imler Road	33.0/	RL	1.06	1.11 m	330 yr (since 1663 ± 22 A.D.)	lavigolose nam. Alloqui esser some nom monogila gover. sove	6.1	2 to 6 ± 1
Imperial (SJ13)	U.S./Mexico International border	32.70/ 115.35	RL Validation				eration 15sb derson scene broucis		2 to 4 ovents betwee 1290 and 1865 A

Historical and Pal Earthquakes	leo	Offset Feature	Dating Method	Reference	thand comments the Type
9 January 1857 8 December 1812 1700 (1680 to 1730 a 1610 (1500 to 1650 a 1470 (1450 to 1490 a	A.D.)	debris flows and stream deposits	20 ⁴¹ 20 to 30 20 to 30 21	Fumal et al. (1993)	Evidence for five paleoearthquakes is based on fault scarps, colluvial wedges, fissure infills, upward termination of ruptures, and tilted and folded deposits. These data indicate that the average recurrence interval for large earthquakes is about 100 yr near Wrightwood.
CAMEE E		alluvial fan	soil profile	Keller et al. (1982a) Bonkowski (1981)	Estimation of slip rate and identification of paleoseismicity for the San Andreas fault in the Indio Hills is difficult. Age of offset fan may be 70,000 yr old but is more likely between 20,000 and 30,000 yr old.
		fluvial terrace	soils and stratigraphic	Metzger and Weldon (1983)	Offset is across Lytle Creek fault (the western branch of the San Jacinto fault. Hence, estimate is not
		buried stream	correlation ¹⁴ C	Wesnousky et al.	indicative of entire slip rate across San Jacinto. Study did not encompass all active strands of the
		stream offsets	soils and U-series	(1991) Prentice et al. (1986)	fault at the site. Slip rate is a minimum. Documented only in abstract form.
	0.8	fluvial conglomerate	paleontology correlation	Morton et al. (1986)	Documented only in abstract form.
F.1 ± 2 ± 1		alluvial fan	soil chronosequence	Rockwell et al. (1990a, b)	the state of the s
E. F ± 2. F		stream channel stream channel	calibrated to ¹⁴ C		
30.1		beheaded channel shutter ridge	70 15 to 70 14 14 15 to 70 16 17 16	Merifield et al.	These dates bracket the slip rate on the Clark fault
70 1 5 L	0 to		61* ± 20	(1991)	north of Anza at 10 to 18 mm/yr for the last 30,000 yr. Data from one trench indicate a recurrence interval for ground-breaking events of
		gravels in channel	4°C 0 -		300 ± 200 yr. The slip rate for the stream gravels are dendrochronologically corrected years.
		ponded sediments	¹⁴ C 250 (10)		
		gravel bed	K-Ar on a tuff	Clark et al. (1984) Sharp (1981)	Meanine Lin Meanine Line M. Inc. 1200 M. Inc. 1200 M. Inc. California Lines Markov M. Inc. 1200
to 3 events		peat layers and allvium	¹⁴ C 11	Klinger and Rockwell (1989)	Documented only in abstract form. Authors interpret 2 to 3 earthquakes occurred during last 750 yr based on vertical offsets of sediments exposed in trench. The data suggest a maximum recurrence interval of 250 yr.
968		buried channel	¹⁴ C	Clark et al. (1984) Sharp (1981)	Ally Ally about 1971 (Cultain)
968		vertical component of lake bed	¹⁴ C and historical record	Clark et al. (1984) Sharp (1981)	Strike slip is inferred from ratio of vertical to horizontal slip during 1968 earthquake. Time elapsed since 1968 and slip during 1969 event not used in determining slip rate (see Clark et al. (1984).
968		Lake Cahuilla sediments	¹⁴ C on shells	Clark (1972)	Authors estimate recurrence interval of about 200 yr for tectonic events like that of the 1968 Borrego
					Mountain earthquake by comparing vertical components of displacement in 1968 with earlier movements recorded in offset sediments of ancien Lake Cahuilla. In light of subsequent observations by Sharp (1981), these observations are consistent with a lesser repeat of between 100 and 200 yr.
987 A.D. 660 to 1915 A.D.		Lake Cahuilla highstand shoreline	¹⁴ C combined with historical accounts	Hudnut and Sieh (1989)	Maximum rate includes interpretation of off-fault warping and minor faulting. Slip rate includes components of both creep and co-seismic offset. Authors further estimate the average interval between large surface slip events on this fault is
event 1670 A.D.		Lake Cahuilla sediments	¹⁴ C	Thomas and Rockwell (1993)	between 150 and 300 yr. These data suggest that the slip rate for the past 300 yr is less than that expected from geodetic
		,		11000000 (1993)	measurements and regional structural models.

Table 1-Continued. Onshore

					Slip (m)		- September 1		lip Rate (mm	/ve)
Pouls	Y	T -+ /T	Fault -				Age of Offset			CALL CONTRACTORY
Fault	Location	Lat/Lon	Туре	Mn	Mx	Print	(kyr)	o Mn	Mx	Bushirus Pr
Elsinore Fault	Zone Colemania							debris flows and		Louisity 1837
Elsinore (E1)	Zone Glenn Ivy North	33.7/	RL	0	85	_	5 to 600	stream deposits	17	8 December 1812 1700 (16 80 to 17
35545	Strand,			85	244	143	20 to 30	2.8 to 4.3	8.1 to 12.2	
	Temescal		STEPPOSITS	152	335	213	30 to 40	3.8 to 5.1		5.3 to 7.1
toward at t	Valley			256	933	594	100 to 200	1.3 to 2.6	4.7 to 9.3	3.0 to 5.9
	.9667						overlap in			0.0 .0 0.0
	and identification of the San Andreas for				Koder & ed. (1982a)		rates	2.6 to 4.3	8.4 to 9.3	5.3 to 5.9
El.: (E2)	of to the to say, the	13 7 AL	H oppel		Bonkewidt (
Elsinore (E2)	Glenn Ivy North Strand, Temescal Valley	117.4	OE bas							
robine into	as other head a side	Sit oil award	s a ballo		Metager and			ous not is all		
300-11.5	wante wipsh Yan	andipal es			D gebleW					
	mark and the mast trib	min la la								
	increa segue ils 125									
Elsinore (E3)	Agua Tibia	33.50/	RL		(TREET)	1035 ± 20	130 to 600	1.7mmaio	8.1	2.9 ± 1.3
	Mountains	117.25			Promise et a	895 ± 20	130 to 600	/19 11.5) maark	7.0	2.6 ± 1.1
					(6881)	1130 ± 20	130 to 600	1.9	8.9	3.2 ± 1.4
		and the the			Morros es es	245 ± 20	15 to 240	1.0 laivel	17.7	4.9 ± 1.7
						140 ± 20	20 to 82	1.5	8.0	4.6 ± 2.3
					Ruckwell at	345 ± 20	50 to 240	1.4 facoulis	7.3	3.5 ± 1.7
					diskert)	880 ± 20	130 to 600	1.5	6.9	2.5 ± 1.1
						245 ± 20	50 to 240	ional.0. more	5.3	2.5 ± 1.3
								tongoth manus		
						70	15 to 70	own 0.7 best d	10.4	
			Those are:			135 ± 20	50 to 600	olio omale	12.7	3.0 ± 0.6
						615 ± 20	50 to 600	1.3	15.6	3.7 ± 0.7
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				760 ± 20	50 to 240	1.8	9.5	4.6 ± 2.2
			STREET			455 ± 20				
	Wildomar fault,			9	11	10	2.358 +	3.3	4.7	4.2
	Murrieta,	117.25					0.371/			
	California						-0.029	Sivilation of the sub-		
Elsinore (E5)	Coyote	32.8/	RL			40	Holocene	susmithe baters;		4.0 ± 1
	Mountains	116.2			Clark H L		K-Acons			
Whittier (E6)	Brea, California	4 200	RL				10			0.95 ± 0.1
		117.60	mat proxi-	14.5	bear required.		14			
								murvlis		
		in the state of								
	The state of the same		12000							
Whittier (E7)	Yorba Linda	33.75/	RL					is 2.5 ; bound	3.0	8391
day to be		117.60			1821) mude			1 1	1.6	
					Jan P. E. S.			serval.		
	The first of g.							to mendqino;		
								Lake Cabrill		8801
	the principle of a	10 to 100				18	14			1.3
Chino (E8)	near Prado Dam					7.6	125			0.06
ATP ATP ATP ATP										
	ens list its adjection							AT	4	
Newport-Ingley	wood, Palos Verdes	and Rose	Canyon Fau	lt Zones				Lake Calmilla		
Newport-	Baldwin Hills	34.05/	RR?	60			100 to 500	0.1	0.6	1680 to 1915 A.
Inglewood	ari of Market Principles at the Control of the Cont	118.37	sie) propin Electron	(e1 2)			8 11	Stangette	3.0	
(N1)	diga, argue o 'c co	20 51 /	DDO							
Newport-	Bolsa Chica	33.71/	RR?	12			10 to 126	0.1	1.2	
Inglewood	Mesa	118.05								1 svent 1570 A.)
(N2)	hall the born	597 <u>1. Main</u> =	ral Juny							
Newport-	Bolsa Gap	33.71/	RR?	6			1 to 11	0.6	6	0.6
- 12.76 E										
Inglewood (N3)		118.03								

Historical and Pa	leo	MC	Age of Offi		theil
Earthquakes		Offset Feature	Dating Method	Reference	Comments Comments
= 2,0		11 34 12 12 12 12	and agrain some	Clare of not	Parkers Controlled Store Section (1997) and the Parkers to
		alluvial fan	soil correlation	Millman and	Soil chronosequence developed by comparison of 75
		surfaces	(現立の経過差の アコヤ (1988年) アコヤ	Rockwell (1986)	soil profiles in Temescal Valley to dated soils in Ventura Basin. Authors assume overlap rates are
					representative of long-term slip rate. Rates are only for horizontal separation. Horizontal to
					vertical ratio of slip may be 2:1 in Temescal
					Valley [see Rockwell et al. (1986)].
st 1660 A.D.		marsh deposits	¹⁴ C	Rockwell et al.	Paleoearthquakes produced 2 to 30 cm of apparent
60 to 1660 A.D.			5.0 % 5.1 %	(1985, 1986)	vertical offset in trench exposures. Authors
1300 A.D. 260 to 1275 A.D. 1060 A.D.					interpret maximum recurrence of 250 yr for surface rupturing events. Note that preferred estimate of horizontal slip rate at site Millman ar Rockwell (1986) is 5 to 6 mm/yr, which suggest
					horizontal slip events of ($<250 \times 5$ to 6 mm/yr) 1.25 to 1.5 m.
		alluvial fan, landslide, and	soil correlation	Vaughan and Rockwell (1986)	Soil chronosequence developed by comparison to so development in southern and central California, a
		fluvial terrace deposits.			no datable material found in any of older deposit Minimum ages for late Holocene deposits placed
					by radiocarbon dates of archaeological sites. Offsets are horizontal separation only. Authors quote "horizontal offset seems to be best brackete
		(1814)	of March 1997		by a slip rate range of 1.5 to 7 mm/yr, with an average best estimate of about 3-6 mm/yr."
					and the second s
		channel	14C 0940 1857 80 (1955 11 11 14 10 1	Bergman <i>et al</i> . (1993)	This rate could be higher if the Willard fault, the Murrieta Creek fault, or the Murrieta Hot Springs fault have experienced significant slip in the late Holocene.
		alluvial fan	soil correlation	Rockwell and Pinault (1986)	ta i kupu ka den esouel polja. Humbillansi sompresso e pa teo jas sadi
		single system of nested feeded channels	¹⁴ C	Gath et al. (1992)	This data suggests a minimum dextral slip rate of 0.95 ± 0.1 mm/yr for one strand of the Whittier fault. Based on the similarity in the amount of right-deflection of the creek across both faults, a minimum slip rate of about 2 mm/yr is reasonab for the Whittier fault zone at Brea, California.
		alluvial fan	Den Ct	Rockwell et al. (1992a)	Two strands display similar deflection of the chann- deposits suggesting that they carry similar amoun of late Quaternary slip. Therefore, the two strand
			Мереккен III		may distribute about 2.6 mm/yr of dextral slip.
					The slip rate for the Whittier fault is about half that estimated for the Elsinore fault. Therefore, Rockwell et al. (1992) suggest that 2.6-mm/yr slip rate may be accommodated by the Chino
		channel deposits			fault.
	11 C 11	channel deposits	dated paleosol	Heath et al. (1982)	Surface and subsurface geologic mapping. Subsurface
	20.40		•		studies included six trenches excavated across photo lineament east and southeast of Prado Dam
					spillway and a line of eight borings were drilled across the zone in this same area.
		alluvial terrace	soil correlation	Clark et al. (1984)	Rates based on vertical separation. Horizontal slip may be greater.
		land surface	topo map correlation	Clark et al. (1984)	Rates based on vertical separation. Horizontal slip
			del or Mitch		may be greater.
			water well correlations	Clark et al. (1984)	Rates based on vertical separation. Horizonal slip may be greater.

THE RESERVE THE PARTY OF THE PA	hadranican adjust a continue and	3		William To Cold William Cold Cold Cold Cold Cold Cold Cold Cold	Slip (m)			9	lip Rate (r	nm/vr)
Fault	Location	Lat/Lon	Fault Type	Mn energy		Pr	Age of Offset (kyr)	OffsenMealure	11/1/20	zodaupdraciPr
Palos Verdes	San Pedro Shelf		My - Wyrollola	3				7 200 100 100 100 100 100 100 100 100 100		
(N4)	San Fedro Shen	118.23	RR7				>10			0.3
	San Pedro Shelf			(8301) (19k6)			30 to 130	0.02	0.1	
	d stat gille more go									
	Palos Verdes Peninsula									3.0
(110)	. Septical States and the									
Risurgan 1	i de 68 al Sifesell	rang 35 dang	ango Has	Ata ve to			D"	L'arsh deposits,		
	San Diego			8.7			8.159 + 0.23, -0.20	/ 1.07 ± 0.03		1360 to 1660 A.D.
	Oct to enformed and all the						-0.20	0.03		-1200 A.D. 1260 to 1275 A.D.
	with the part of the less									
- U.S. Vit remine	and the start to desire the start		61 20 T							
Fransverse Rang	ges Faults nge Front									
Sierra Madre		34.25/	R				Pleistocene			
(T1)	Glendora	118.25					210101000110			
	Dunsmore					4	1 to 11	0.36	4.0	
(T2)	Canyon	118.25								
Sierra Madre	Gould Mesa	34.21/	R			600	200 to 500	1.2	3.0	
(T3)	Could Micsu	118.19				000	200 to 500	1.2	3.0	
	Int Deputation				Bergus	244	200 4 500) (Lamed)		
	Jet Propulsion Laboratory				961	244	200 to 500	0.5	>1.2	
							soft care	nat lovvilla		
San Fernando	Oak Hill	34.1/	R	(8111.) 11 (24x11.5n				single system of		
(T5)	to beautions and to	118.4		17.5.1				bedesit betest		
								ยโดยเนอร์ถ		
	od kaston komi mi									
is ressent per e	of stood 2 mm syr									
San Gabriel	northwestern	34.8/	RR	500 1	000		1000 to 5000	0.5 involta	1.0	
(T6)	terminus						late Pliocene			
character (et	slip. Therefore, the	Оранстату.					to mid Pliestocene			
Cucamonga	Day Canyon	34.17/	R			36	10 to 13	4.5 to 5.5		
(T7)		117.53								
	"L's sougest con									
D1 (TO)	0	24 12/	T D					channel deposits	0.00	
Raymond (18)	Sunnyslope		LK					0.10	0.22	0.13
	to reading but to	a. 7. Barbar								
	r egation areas in									
Vestern Transve	erse Ranges									
Hollywood	Atwater School			2	3		4 to 6	0.33	0.75	
(T9)		118.30								
				(48PI) No. 1		อะเริ่งแล	made agos	sastale buil		
	Portrero Canyon			34	47		122 to 126	0.27	0.39	
(T10)		118.53	- 1							
			24.5 JULY 1				Walter well			

Historical and F Earthquakes		Offset Feature	Dating Method	Reference and	Fault Comments Lat/Loa Type
4	ř	seismic reflector	correlation with nearby cores	Clark et al. (1984) Darrow and Fisher (1983)	Rates based on vertical separation. Horizontal slip may be greater. Reflector assumed to be base of Holocene Gaspar formation.
		seismic reflector	correlation with nearby cores	Clark et al. (1984) Darrow and Fisher (1983)	Rates based on vertical separation. Horizontal slip may be greater.
		terrace on flank of Palos Verdes anticline	age of terrace and absolute dating of deformed rock	Valensise and Ward (1992)	The slip rate of the Palos Verdes fault was independently calculated based on the age of one of the best investigated terraces and on absolute dating of the deformed bedrock.
		gravel-filled	¹⁴ C	Rockwell et al.	Trenches demonstrate a minimum of 8.7 m of right
		channel	用了 ² 可有进	(1992)	lateral slip and less than 1 m of dip slip. Other strands of the Rose Canyon fault zone are mapped
					to the east and west of this site and if they carry slip than the rate determined may substantially underestimate the total seismic slip rate for the
					entire fault zone.
					Capalagnia detach Lagrania al Achter Communica
		alluvial fan deposits	¹⁴ C	Crook et al. (1987)	Study of 33 trench exposures along the fault zone between Sunland and Glendora revealed no evidence of Holocene movement, leading authors to speculate a recurrence time >5000 yr for
		alluvial fan	soil development	Clark at al. (1004)	individual sections of the fault zone.
		surface	soil development	Clark et al. (1984)	Reinterpretation of data presented in Crook <i>et al.</i> (1987). The rate calculation assumes vertical separation approximates vertical displacement.
		alluvial deposits	soil development	Clark et al. (1984)	Horizontal component may be present. Reinterpretation of data presented in Crook et al. (1987). The rate calculation assumes vertical separation approximates vertical displacement an
		alluvial deposits	soil development	Clark et al. (1984)	is for entire width of fault zone. Reinterpretation of data presented in Crook et al. (1987). The rate calculation assumes vertical
					separation approximates vertical displacement an is across Bridge strand only. Horizontal compone may be present.
971 A.D. 00 to 300 yr B.P.		colluvium	(Mark Phys. A. 15	Bonilla (1973)	Radiocarbon date of 100 to 300 yr b.p. on wood recovered in displaced pre-1971 scarp colluvium basis to interpret two large events during last 100 to 300 yr. Trench across subsidiary fault strand which also broke in 1971. Penultimate offset greater than 1971.
		alluvial, fan, and landslide deposits		Weber (1979)	Based on Pleistocene subunits of Saugus Formation in Honor Rancho area (dated 1 to 5 m.y.)
ee comments		alluvil fan surface	soil development and ¹⁴ C	Morton and Matti (1987)	Vertical component of slip (36 m) is cumulative across 3 strands. Uncertainty in slip rate reflects both uncertainty in fault dip and time period ove which slip occurred. Authors also interpret age of
					offset distribution on individual fault strands to interpret a 684-yr repeat time for 2-m ground-rupture events.
events during last 36,000 yr interpre from sequence of	t eted	sag pond deposits	¹⁴ C	Crook et al. (1987)	Assumes sedimentation rates based on ¹⁴ C dates in sequence of sag pond deposits are equal to rates vertical separation during the last 36,000 yr. Rat of sedimentation based on mean values from nine
exposures. Young event Holocene.	gest			12.	samples from different depths. Horizontal component may also be present.
		river terrace surface	soil correlation	Clark et al. (1984)	Assumes that degraded scarps on terrace are fault- produced and that vertical separation approximate vertical offset. Rate determined by Clark et al. (1984) from data in Weber (1980).
		marine wave-cut platform	paleontology, amino acids, geomorphology, and dated sea	Clark et al. (1984)	Assumes that vertical separation approximates vertical offset. Rate determined from data in McGill (1981, 1982).

Table 1-Continued. Onshore

Martin .					Clin (m)			- C1	n Dota /-	nm /s/r)
		· · / · / ·	Fault		Slip (m)	D	Age of Offset		ip Rate (n	A MANUELLE DESCRIPTION
Fault	Location				Mx		(kyr)	Mn		es leupdrei Pr
Malibu	il sone, associ Mosi. Postor associati to consilori.	118.53	od yaar		Class words (Danowonad (1981)		20 4 to 5	rotusfiga staurios	5	
Coast (T11) Malibu Coast	Marie Canyon			8.5	16.3		185 to 200	0.04	0.09	
(T12)	Marie Garijon		अर्थ पृक्षात		i bris wizerki! (ESF1)		Aquen		~	
	ator settes mairs		a phis							
Malibu Coast (T13)	Corral Canyon	118.73				in 5 ikab kom ti	185 to 200	0.03	0.03	
	da yed bar CP to saprond on a									
Santa Susana	Aliso Canyon	34.32/	R			>4000	500 to 2000	>2	>8	
(T14) Santa Susana	Tapo Canyon	118.55 34.36/	R							
(T15)	area	118.71	÷all φις Lachts							
San Cayetano (T16)	Sisar Creek	34.45/ 119.13	R			13	15 to 20	>0.85	>1.25	
San Cayetano	Bear Canyon	34.44/	R	8	10	9	8 to 12	0.95	1.75	1.35
(T17)	adegral and of			129	141	135	80 to 200	1.85	2.45	2.15
North	Mud Creek	119.01		29	35		15 to 20	1.8	2.9	2.35
	0006 onu some			16	20		_5	×2.2	>4.0	8.7
	Timber Canyon			16 1375	20 1675		<5 160 to 200	>3.2 6.8	>4.0 10.6	6.7
,	Fillmore	34.40/	R	1575	10/5	9000	1000	eceiros	10.0	9
	Fillmore									7
il laminer			1.50							
								_	_	J.
		34.65/ 119.30				13,000 16,000	1800 to 6,000	ener in foreula	7	4
Oak Ridge	Fillmore	34.38/	R			3500	1000			3.5
(T23) Oak Ridge	Santa Paula	34.35/	R	2375	2490		200 to 400	5.9	12.5	• GAIRE
(T24) Red Mountain	Javos Canyon	119.05 34.35/	R?			27.4	45 to 60	0.5	>0.7	100 to 340 yr B c.
main strand (T25)	ing allers flav of Tymbia in an	119.40				27.4	45 10 00	0.5	20.7	
Red Mountain	Punta Gorda	34.26/	R?	22.8	26.3		45 to 60	0.4	0.6	
South Strand (T26)		119.44	Maria Carrell Maria Pan	,===(10.0	
Red Mountain	Punta Gorda	34.37/	R?	60	69	C TOWNS TO	45 to 60	salaraja.	1.5	
		119.45								
Red Mountain	an sale meters	34.37/ 119.44	R	29.5	34.1		45 to 60	0.5	0.8	
Red Mountain	Lake Casitas	34.34/	R	200	3500		250 ± 50	0.7	18	wel to vol remede. The second during the second of the sec
	Ventura and the	34.28/	LR?	12	13.9		5.7 to 15	0.8		

The state of the s	Offert Pr	Datin - Mari - O	15 C	Any? or first a more of
Earthquakes	Offset Feature	Dating Method	Reference	acy f = Heal/Isal Comments 1 Burns
	stream courses	15. 在扩 套	Molnar (1991)	the standard of the standard of the standard of
	slate	31		
	morino viova out	completion		ne enematedry, during the last 3790 by and
	marine wave-cut platform	correlation	Clark et al. (1984)	Assumes that vertical separation approximates vertical offset. Rate determined by Clark <i>et al.</i> (1984) from Yerkes and Wentworth (1965) and other unpublished data.
	marine wave-cut	paleontology, amino acids, geomorphology	Clark et al. (1984)	Assumes that vertical separation approximates vertical offset. Rate determined by Clark <i>et al.</i> (1984) from Yerkes and Wentworth (1965) and other unpublished data.
	Modelo formation	correlation	Yeats (1987)	Offset is stratigraphic separation. True offset likely much larger.
robable age of last movement > 10,000 yr		¹⁴ C is peatlike layers	Lung and Weick (1987)	Fault not observed in trench presumably emplaced over fault trace. Inferred that any fault movement
B.P.	fluvial terrace	soil development	Rockwell (1988)	predated age of unbroken "peatlike layers." Rate determined from vertical offset measurement
	alluvial fan	soil development	Rockwell (1988)	and assuming fault dips at 45°. Rate determined from vertical offset measurement
	surfaces alluvial fanhead	out on C. Et MY		and assuming fault dips at 45°.
	anuviai fannead	soil development	Rockwell (1988)	Rate determined from vertical offset measurement and assuming fault dips at 53°.
	alluvial fan	soil development	Rockwell (1988)	Carrie Marina Ne Habby - April Color (Mark) - Little V Little along Black for the Color of the Little VIII
	surfaces base of Saugus	and ¹⁴ C correlation	Yeats (1983)	Interpreted by author based on Figure 11 of Yeats
	87.0		Molnar (1991)	(1983).
			Wolliar (1991)	Interpreted cross sections of Yeats (1983) and Rockwell (1988) so that the cross section is take
				perpendicular to the strike of the structure and obtains a slightly lower slip rate then they did.
	Ozena fault and Maldulce Syncline	fault displaces late Pliocene sediments	Molnar (1991)	Rate determined by looking at maps of Hill and Dibblee (1953).
	base of Saugus	correlation	Yeats (1983)	Interpreted by author based on Figure 11 of Yeats (1983).
	top of Saugus formations	correlation	Yeats (1988)	atmospi (1873) is a series of the property of the contract of
	marine platform	amino-acid and U-series	Clark et al. (1984)	Slip rate based on interpretation of a number of reports: Lajoie et al. (1982); Lee et al. (1979); Sarna-Wojcicki et al. (1979); Yeats, 1982; Yerke
	(C.22 cm (C.2)	Ale to the		and Lee (1979), and Yeats et al. (1987).
	marine platform	amino-acid and U-series	Clark et al. (1984)	Slip rate based on interpretation of a number of reports (Lajoie et al., 1982; Lee et al., 1979; Sarna-Wojcicki et al., 1979; Yeats, 1982; Yerker and Lee, 1979; and Yeats et al., 1987).
	marine platform	amino-acid and U-series	Clark et al. (1984)	Slip rate based on interpretation of a number of reports (Lajoie et al., 1982; Lee et al., 1979; Sarna-Wojcicki et al., 1979; Yeats, 1982; Yerker and Lee, 1979; and Yeats et al., 1987).
	marine platform	amino-acid and U-series	Clark et al. (1984)	Slip rate based on interpretation of a number of reports (Lajoie et al., 1982; Lee et al., 1979; Sarna-Wojcicki et al., 1979; Yeats, 1982; Yerke and Lee, 1979; Yeats et al., 1987).
	Casitas formation	correlation	Huftile and Yeats (1992)	Slip rate reflects interpreted shortening rate, assuming that Red Mountain fault flattens to
	alluvial fan surface	¹⁴ C and amino-acid	Clark et al. (1984)	horizontal at depth. Rate calculated from observations in a number of reports (Gardner and Stahl, 1977; Lee et al. 1979)
	Surrace ,	Taccinization		Sarna-Wojcicki et al. 1976; Sarna-Wojcicki and Yerkes, 1982; Yeats, 1982; Yerkes and Lee,
				1979). Rate calculation assumes fault dip of 60° 90°. May be a nonseismogenic bending moment

			Fault _	Slip (m)		Age of Offset	3	Slip Rate (mm	/yr)
Fault	Location	Lat/Lon	Type	Mn Mx	Pratal	(kyr)	Mnorth)	Mx	zásopaltusi Pr
Javon Canyon (T31)	Javon Canyon	34.34/ 119.40	R	Molean (1994) and M	4	3.5	RORFERO COURSES	And the second s	1.1
				42 49		45		>1.1	
						reytalgree			
	A so someospab								
	and Wenovorth								
			A second				ton-bysay, square		
	Javon Canyon				61	45 to 60	1.0 molasiq	>1.4	
(132)		119.39							
Padre Juan (T33)	Javon Canyon	34.34/ 119.40	R?	CVV21 / access			0.4		
Villanova	Ventura River	34.43/		E. S. Wins Smill C. ROLL	11 ± 0.3	28.5 to 30.9		74 ORG. 0	0.37 ± .02
(T34)	Ventura River		eg News	(879)	11 ± 0.3 14 ± 0.3	36.5 to 39.5		34 0080,0	$0.37 \pm .02$
	Ventura River	34.42/			9.00	28.5 to 30.9	0.35	0.40	$0.37 \pm .02$
		119.29			15 ± 3	36.5 to 39.5	0.37	0.42	$0.39 \pm .02$
				r (8-Pri Havrábe P			0.59 hividie		0.76
	9 7	The Segment	or book		98 ± 3	79 to 105	0.90	1.27	1.07
Devil's Gulch	Ventura River	34.41/	R	47 FO		36.5 to 39.5	bandpel trively	1.24	$0.47 \pm .02$ 0.69
(T36) Dak View	Ventura River	119.30 34.41/	R(v)	47 59 23 33	37 ± 3 19 ± 3	44 to 64 44 to 64	0.73 0.25	1.34 0.50	0.35
(T37)	ventura Kivei	119.28	14(1)	LOURS IN Helesbor		soil develo	ne) isivulla	0.50	8.7
Thorpe (T38)	Timber Canyon		N	3.0 10.6		4.5 to 5	0.6	2.4	
amay to i		119.01	growy smil	13 24		25 to 30	0.43	0.96	
			Estit	116 141		160 to 200	0.58	0.88	
Culbertson	Timber Canyon		N	0 1/00 1 10/6/1/		4.5 to 5		0 to 1.3	
(T39)				1.6 9.1 37 49		25 to 30 160 to 200		0.05 to 0.36 0.19 to 0.31	
Rudolf (T40)	Orcutt Canyon			3 9		4.5 to 5	0.6	2	
	The state of the s			23 29			0.77	1.2	
				60 64		80 to 100	0.6	0.8	
Orcutt (T41)	Orcutt Canyon	34.40/ 119.05			?				
Arroyo Panda-	Ventura River	34.43/	R?		$11 \pm .3$	29.7 ± 1.25			$0.37 \pm .02$
Santa Ana (T42)		119.29			14 ± .3	38 ± 1.5	tornations formations counce phalogo		$0.37 \pm .02$
More Ranch	Goleta	34.42/	R?		10	40 to 60		>0.3	>0.3
(T43)		119.88		· /					
South Santa	Alegria Canyon		LV		3	5 to 15		>0.6	0.4
	Phys Convon	120.27 34.49/	LV		34	10 to 700	0.05	3.4	0.3
Santa Ynez North	Blue Canyon				34	10 10 700	0.03	3.4	0.5
Strand (T45)									
g nate									
Santa Ynez	Blue Canyon				67	10 to 700	0.1	6.7	0.7
				ARPIN Anna Mal		Libration State			
Santa Ynez	near Blue				5	80 to 105			0.1
South Strand	College Assessment								
(T47a)	문 발한 클릭 : "bil 35;								. ~
Cleghorn	se Range Cleghorn Road	34.29/	c IL grad			Quaternary	1.5	18.0	3.0
Ord Mountain	northwest flank	34.41/	R(v)			Quaternary		1.2	0.1
(T48) Sky High	Fifteen Mile	117.20 34.4/	RL			Quaternary	0.3	15.0	1.3
Ranch (T49)	Valley	117.0	127.51						
			LL			Miocene	0.3	5.3	1.0
Mountain		116.3							

Historical and Paleo	BH N	18		(an) quid	
Earthquakes	M	Offset Feature	Dating Method	Reference	equit mailtail Comments I due!
3500 B.P.		stream terrace	¹⁴ C	Sarna-Wojcicki et	Fault shows stratigraphic evidence of five rapid
2975 B.P.		platform		al. (1987)	displacements with throw ranging from 0.4 to 1.3
830 B.P.		marine terrace		0000	이 그는 그는 그 아무네는 나는 그 집에 살아가고 있는데 아니라 그는 그 그는 그를 하는데 그는 것이 없다.
		marine terrace	(90) (00)		m, respectively, during the last 3500 yr but
475 B.P.			correlation,		inferred to be flexural slip fault and, hence,
25 B.P.			U-series, ¹⁴ C		nonseismogenic by Yeats (1982). However, Sarna
				1600 4009	Wojcicki et al. (1987) indicate that whether or no
					fault is bedding-plane fault is irrelevant to hazard potential.
		marine platform	amino-acid and	Clark et al. (1984)	Reported from Sarna-Wojcicki et al. (1979) and
2.0		61.0	U-series	0.0/Un (18 0)	Yeats (1982). Rate reflects vertical component
		marine platform	0.00, 000 mine said and	Cl. I. (1004)	only.
		marine platform	amino-acid and U-series	Clark et al. (1984)	Reported from Sarna-Wojcicki <i>et al.</i> (1979) and Yeats (1982). Rate reflects vertical component only.
		river terrace	soil development	Rockwell et al.	
		surface	and ¹⁴ C		Fault parallels bedding and may represent flexural
				(1984)	slip along overturned limb of fold,
		river terrace	soil development	Rockwell et al.	Fault parallels bedding and may represent flexural
st		surfaces	and ¹⁴ C	(1984)	slip along overturned limb of fold.
8.0 5		P. 0	CARDAN		shnapes on Lavy Bed., .(er C4.66); the call
		river terrace	soil development	Rockwell et al.	Fault parallels bedding and may represent flexural
		surfaces	and ¹⁴ C	(1984)	slip along overturned limb of fold.
		river terrace	correlation	Rockwell et al.	
		surface	correlation		Fault parallels bedding and may represent flexural
			3) H 3 L	(1984)	slip along overturned limb of fold.
		alluvial fan	soil development,	Clark et al. (1984)	Reported from Rockwell (1983). Fault parallels
		surfaces	dendrochronology and ¹⁴ C		bedding and may represent flexural slip along overturned limb of fold.
	8	alluvial fan	soil development	Clark et al. (1984)	Reported from Rockwell (1983). Fault parallels
		surfaces	and ¹⁴ C	14	bedding and may represent flexural slip along overturned limb of fold.
		alluvial fan	soil development,	Clark et al. (1984)	Data and interpretation reported from Rockwell
E di		surfaces	dendrochronology and ¹⁴ C	11 11 11 11 11 11 11 11	(1983). Fault parallels bedding and may represent flexural slip along overturned limb of fold.
					the thirty Califor Sweet structures served to the
		river terrace	soil development	Rockwell et al.	Part Charles Add Control of the Cont
		surfaces	1000 de velopinent		Fault progressively offsets four terraces of the
		surfaces	ensscipH	(1984)	Ventura River. Dip of fault not known. Vertical separation assumed to equal vertical displacement. Horizontal slip may also be present.
		marine wave-cut	paleontology and	Clark et al. (1984)	Assumes vertical separation equals displacement.
		platform	amino acids		Horizontal component may be present.
		fluvial gravels	geomorphology and sea-level curve	Clark et al. (1984)	Vertical component only. Horizontal component is small (<50 m).
		river terrace	inferred	Clark et al. (1984)	Rate calculated from observations in Keaton (1978).
		surface and		(,	And the state of t
		incised stream			the suppose However are example a MM to the V
		channels			
		river terrace surface and	inferred	Clark et al. (1984)	Rate calculated from observations in Keaton (1978).
		incised stream	676 - 4-70		slock Fault
		channels	683 st 98	- O.M O.M.	han -14 m. A-0.38 have Asset (450) and (10) states
		terrace deposits		Rockwell et al. (1992b)	This is a vertical slip rate. The strike-slip rate is inferred to be as great but not greater than the
	F				vertical slip rate.
		stream offsets		Meisling (1984)	Information from Wesnousky (1986).
				Meisling (1984)	Information from Wesnousky (1986).
				Meisling (1984)	Information from Wesnousky (1986).
			ALC: TELETICAL	Anderson (1979)	Information about Wesnousky (1986).

Table 1—Continued. Onshore

			Fault	Slip (m)			. Age of Offse	Slip Rate (mm/yr)		
Fault	Location	Lat/Lon		Mn	Mx		(kyr)	Mn	Mx	ndanyahasi Pr
- High -	il le unestrell sic	hoto Mens ev	oods tuis?	1 as 12:	unio W-sersio	Ą	1.5 yel	SOUTHER DEAL	1977	1 9 S ONE
Mojave Faults	ort geranar ernd	34.73/	DI	9500	0600		2000 .	modi	nig .	2975 B.P.
Calico- Blackwater	Rodman Mountains	116.58	RL	8500	9600		2000 to	0.43	4.8	2.6 g ocki
(M1)	bas dun que la	110.56					20,000			9.0 2141
Weyer, harris	YORK (1987), 110	ye within					com of			
Camp Rock	Newberry	34.73/	RL	1600	4000		2000 to	0.08	2	1.0
(M2)		116.78					20,000	0.00	~	1.0
THE RESERVE	Coorteal or or 'Ch	f-ormed than		(\$861)	Charle of al.			research or in		
Helendale	Interstate 15					3000	2000 to	0.15	1.5	0.8
(M3)	The Shift of Shipp	117.22			Jan Harald		20,000			
	ro la abese a custo e				1942 NO 2 (1) 1 1		ออฟ อฟเกต การค.ป			
							CONTRACTORS.			
		oalised of a								
	Newberry			1500	3000			0.05		0.8
	Mountains				1. 1		2000 to 20,000	0.03		0.6
	files ha days h						20,000			
Rodman-	Lava Bed	34.65/	RL	6400	14,400		2000 to	0.32	7.2	3.8
Pisgah (M5)	Mountains	The state of the second			te Gowleyse 11	10.5670	20,000	508FT111		
	delet in dans				1884		Y ban	archel da		
	SHIP NO CH		in that					is blanch to		
Bristol		34.86/		6000			2000 to	>0.3	>3.0	1.7
	Smith of the Tylle				Claffe in all		20,000			
(M6)										
Crossel Hills		25 10/			2200		2000 4-	c0.16	1.6	0.0
Gravel Hills- Harper (M7)	er milk seniki is fo	35.19/ 117.4	· KL		3200	HOLLEGHE	2000 to	<0.16		0.9
Taiper (W17)							20,000			
		in dmil ho.								
Pisgah (M8)	Sunshine Cone	34.6/					late	1 Plenostros		0.8
and the second s	lava field	116.4					Quaternary			
	States a right in		min or							
		4.54								
Homestead	elaborrio quil rical	34.1/	RL			3		0.4	0.6	
Valley (M9)	could near think to	116.4					Pleistocene-			
							Holocene			
	to be body and as the		osin/							
Emerson (M9)	dag seats ande	34.1/	RL	2	6	0.76 43	9	0.2	0.7	
		116.4		_	7			0.2		3
			6000						uff s	
Northern		34.1/	RL							
Johnson		116.4	Adap urek				. Dordini	1 But 755 35		
Valley (M9)								State of and		
								Clastra stratta		
renselli (1901) seradi		San Land			in to shall		Carrisofar	BUZITOL VA		
								bur pushes		
Garlock Fault								masus beermi		
Garlock (G1)	Oak Creek	35.04/	LL	200	300		90 to 190	1 stempedo		2
		118.40			Rockwell er					
G 1 1 (GO)	v	25.05/	la di nav					_		_
Garlock (G2)	Koehn Creek	35.37/	LL	75	85		11 to 15	5	8	7
		117.85								
	. 68 C Chart from	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			fir parkioth					
Garlock (G3)	Mesquite	34.43/	LL	16,000	20,000		<650 to 3000	5	>30	11
2. 22.	Canvon	117.72					Total Care		14.41	
Garlock (G4)	Christmas	35.52/	LL Chal	7000	9000		8 to 10	0.7	1.1	1
190 %	Canyon	117.37			D merculous					
Garlock (G5)	Searles Valey	35.48/	IL	81.6	105.6	90.3	10 to 13.8	4	9	5 to 7
		117.65								

Historical and Paleo Earthquakes	Offset Feature	Dating Method	Reference	styll socilar Comments in Hard
	Vana Sasinas	equested	Dalde (1982)	Lies and the second sec
	Kane Springs fault	fossils and K-Ar	Dokka (1983) Dokka and Travis (1990a, b)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
	Kane Springs	fossils and K-Ar	Dokka (1983)	Dokka and Travis (1990a, b) preferred age for
	fault		Dokka and Travis (1990a, b)	slip rate based on mean of the minimum and maximum slip rates.
	pluton	inferred	Dokka (1983) Dokka and Travis (1990a, b) Miller and Morton (1980), Miller (1980)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
	Kane Springs fault	fossils and K-Ar	Dokka (1983) Dokka and Travis (1990a, b)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
	Kane Springs fault	fossils and K-Ar	Dokka (1983) Dokka and Travis (1990a, b)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
			Dokka (1983) Dokka and Travis (1990a, b)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
			Dokka (1983) Dokka and Travis (1990a, b)	Dokka and Travis (1990a, b) preferred age for initiation of faulting in 6 to 10 m.y.b.p. Preferred slip rate based on mean of the minimum and maximum slip rates.
gete at the finder to a Lastoning browns fee of browley	Sunshine Cone lava field	duzing ibe i testi i sisted wist displa that we we seed	Hart et al. (1988)	In addition, Late Quaternary geomorphic features just north of Hidalgo Mountain suggest a slip rate for the West Calico fault that is comparable to the
1992 5.7 to 8.5 ka 2.5 to 14 ka	alluvial fan and playa deposits	er ¹⁴ C etac cardem et acids to borson et comme o but	Hecker et al. (1993)	Pisgah fault (about 0.5 to 1 mm/yr). Site is located where slip in the 1992 Landers earthquake was 3 m and vertical slip was 0.4 m. Apparent vertical displacement for the penultimate event is 35 to 40 cm, similar to the 1992
1992 O ka	soils	14C	Rubin and Sieh (1993)	diplacements. The previous event had similar displacement to the 1992 offset at the site they studied.
14.8 to 24.1 ka 1992 0.1 to 9.4 ka 0.4 to 9.5 ka	soils	11 4c) 2 1131 60 y3515 613 6 65 7 10 15	Herzberg and Rockwell (1993)	The previous event produced a scarp and rupture over a 15-m-wide zone, similar to the width of the 1992 rupture. However, the event between 9.4 and
Might show it is to No ivanto it work				9.5 ka is only represented by minor displacement and may have been caused by triggered slip or a much smaller event.
ost 890 ± 195 yr B.P.	stream channels	correlation	Clark et al. (1984) LaViolette et al. (1980)	Reported from La Violette et al. (1980) although Clark et al. (1984) note that 200 to 300 m of offset may be estimated from Figure 2 of the
to 17 events in past 15 ka yr	lake bar	¹⁴ C on tufa and shell	Clark et al. (1984)	article. Based on data published in abstract form only (Burke and Clarke, 1978; Clark and Lajoie, 1974). Clark
Ki fotter beier ziet i			the times to	et al. (1984) note that soil on bar suggests older
WORL Met 2 Test Country		nope' / in anolisvito	man et bas	age for bar deposit than used for slip rate calculation.
	alluvial gravels	fossils	Clark et al. (1984)	Based on data from Carter (1980, 1982).
Mismail evizorosi	former stream	¹⁴ C and correlation	Clark et al. (1984)	Rate based on data from Smith (1975).
ost 1490 A.D.	Pleistocene lake shoreline	d'C by bus disk	McGill and Sieh (1991)	Rate estimate incorporates (Bard et al. 1990) calibration of radiocarbon timescale. Offset geomorphic features indicate past several earthquakes involved 2 to 3 m slip. Using slip rate

Table 1—Continued. Onshore

Fault Location Lat/Lon Type Mn Mx Pr Mn Mn Mn Mn Mn Mn Mn M		Location	Lat/Lon	Fault Type	Slip (m)		Age of Offset	Slip Rate (mm/yr)					
Mountains 117.84 Garlock (G7) Pilot Knob 35.60/ LL Holocene 3 9 Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3	Fault				Mn	Mx		•					
Garlock (G7) Pilot Knob 35.60/ LL Holocene 3 9 Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3	Garlock (G6)			LL				Holocene	4	7			
Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3	703 ag	Mountains	117.84			1801932-31							
Garlock (G7) Pilot Knob 35.60/ LL Holocene 3 9 Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3	business.		r gain se Pale ons du bosed	व्यवसम्बद्धाः ५० वृत्तेः									
Garlock (G7) Pilot Knob 35.60/ LL Holocene 3 9 Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3													
Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (GW) Quail on a 35.62/ LLN 43 80 30 to 34 1 3		u, programme e. Ristoria (Ristoria de como de	restricted Inte										
Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns. Garlock (G8) Leach Lake and 35.60/ LL Avawatz 116.45 Mtns.	Garlock (G7)	Pilot Knob Valley	35.60/ 116.96	LL st q				Holocene	3	9			
Garlock (G8) Leach Lake and 35.60/ LL Holocene 1 9 Avawatz 116.45 Mtns. Garlock (Owl Quail 20 35.62/ LLN 43 80 30 to 34 1 3						(EEP) makeli				totq s			
Garlock (G8) Leach Lake and 35.60/ LL Holocene 1 9 Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3	tork or o	rdzm Ototoa				of the saded							
Garlock (G8) Leach Lake and 35.60/ LL Holocene 1 9 Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3		named of the manner	and the best and										
Garlock (G8) Leach Lake and 35.60/ LL Holocene 1 9 Avawatz 116.45 Mtns. Garlock (Owl Quail 35.62/ LLN 43 80 30 to 34 1 3													
Garlock (G8) Leach Lake and 35.60/ LL Holocene 1 9 Avawatz 116.45 Mtns. Garlock (Owl Quail and 35.62/ LLN 43 80 30 to 34 1 3													
Avawatz 116.45 Mtns. Mtns. More and the second se													
best of the contract of the general translation of the second of the contract		Avawatz	116.45						1 11 dz	9			
Garlock (Owless Quail and so are as 35.62/ at LLN a 43 for as 80) 30 to 34 1 3			etta i af b										
Garlock (Owled Quail and to state 35.62/ see LLN = 43 foliable 80) 30 to 34 1 3	barrains à												
Garlock (Owled Quail of the state 35.62/ or LLN = 43 (fine 80) 30 to 34 1 3						(d., 0001)							
Garlock (Owled Quail and the state 35.62/ LLN 43 follow 80 1 30 to 34 1 3													
Garlock (Owl — Quail and a rank 35.62/ — LLN — 43 — 43 — 80 — 30 to 34 — 1 — 3													
1 3													
	The second control of				43	80		30 to 34	1	3			

earthquake (M_L 5.9) that ruptured the Mission Creek and Banning faults, respectively (Richter *et al.*, 1958; Jones *et al.*, 1986; Nicholson, 1992). In addition, the highest background seismicity in southern California is also located in the vicinity of San Gorgonio Pass, where the seismicity is diffuse and does not clearly identify any particular fault (Fig. 2; Hill *et al.*, 1990). Seismicity extends to depths between 15 and 22 km along this section of the southern San Andreas (Fig. 4).

Fault Slip Rate Studies. Immediately south of the junction of the San Andreas and San Jacinto faults and within Cajon Pass (Fig. 2), Weldon and Sieh (1985) obtained four independent estimates of the slip rate. Their work limits slip on the San Andreas at this site to 24.5 ± 3.5 mm/yr for the past 14,400 yr. Farther to the south near Yucaipa, along the Mission Creek and San Gorgonio Pass fault zones, Harden and Matti (1989) used soil age estimates and offset alluvial fans to interpret a slip rate of 14 to 25 mm/yr over the last 14,000 yr, but admit minimum and maximum estimates of 11 mm/yr and 35 mm/ yr. Yet, farther to the south, near Indio, Keller et al. (1982a) interpret a 0.7-km cumulative offset of an alluvial fan, whose age is estimated by soil profile development to range between 20,000 and 70,000 yr. From these observations, they suggest a slip rate for the southern San Andreas between 10 and 35 mm/yr with a best estimate of between 23 and 35 mm/yr. Bonkowski (1981) also indicated that numerous earthquakes have occurred

during the latest Pleistocene, each of which were associated with displacements of at least several meters. In that same region, Sieh (1986) interpreted displaced lacustrine beds to reflect a 30 mm/yr slip rate during the period of about 1000 to 1700 A.D. Further study of the Indio region by Sieh and Williams (1990), however, indicates that slip has occurred by creep along the fault between Indio and Bombay Beach and averaged only 2 to 4 mm/yr during the last 300 yr or so. They interpret the creep to reflect motion in only the upper few kilometers of the crust, and note that wide-aperture geodetic measurements over the past 2 decades indicate higher rates of strain more consistent with the 30 mm/yr slip rate found for the period 1000 to 1700 A.D. (Prescott et al., 1987; Savage et al., 1981).

Paleoearthquake Data. Direct evidence of paleoearthquakes is limited to sites at Cajon Pass and Indio. Excavations at Cajon Pass provided Weldon and Sieh (1985) tentative evidence for six earthquakes during the past 1000 yr and led them to suggest an average recurrence interval for large earthquakes of 1.5 to 2 centuries. Similarly, Sieh and Williams (1990) observed evidence of dextral slip events of > 2 m and recurrence of large earthquakes on average every 2 to 3 centuries in trenches across the San Andreas near Indio.

A synopsis of the fault slip rate and paleoearthquake

Historical and Paleo Earthquakes Offset Feature Dating Mo	
anspectively, during North Lor of LISRI afe gull	
such temperature (99). Note that 1991, make bes	(1991) calibrated it from 5 to 8 mm/l ⁴ C-yr to 4 to 7 mm yr. Offset geomorphic features indicate past
	several earthquakes involved 4 to 7 m slip. Using
they a not be well where the thirty and o	
rawing and at 30 and provide the department	
i Obec e i noblinoso esci no presentin concentra incheses Contrologia	McGill and Sieh Used slip rate upper bound of 9 mm/yr and lower (1991) rate of 3 mm/yr from offset Pleistocene shoreline (McGill and Sieh, 1991). The lower bound is
	reduced from 4 to 3 mm/yr since some slip may be accommodated by a nearby active fault. Offset geomorphic features indicate past several
	earthquakes involved 2 to 4 m slip. Using a slip rate of 3 to 9 mm/yr they obtained a recurrence interval of 200 to 1300 yr for large earthquakes.
	McGill and Sieh (1991) Used slip rate upper bound of 9 mm/yr and lower rate of 1 mm/yr from offset Pleistocene shoreline (McGill and Sieh, 1991). The lower bound is
	reduced from 4 to 1 mm/yr since some slip may
	be accommodated by nearby active faults. Offset geomorphic features indicate past several
	earthquakes involved 2 to 3 m slip. Using a slip rate of 1 to 9 mm/yr they suggest a recurrence
channel wall	interval of 200 to 3000 yr for large earthquakes. McGill (1993) Dated weathering rind beneath varnish.
VIMILION WALL	McGill (1993) Dated weathering rind beneath varnish.

data for the entire southern San Andreas is provided in Table 1 and locations are shown in Figure 1.

San Jacinto and Imperial Faults

The San Jacinto and Imperial faults comprise a 300-km-long zone that is composed of several subparallel fault strands, separated by en-echelon steps as large as 4 to 8 km (Fig. 5). Fault slip is primarily right lateral, although significant vertical motion may contribute up to 10% of the net slip (Brown, 1990). In addition, the zone is intersected by several left-lateral faults that trend northeast (Nicholson *et al.*, 1986; Hudnut *et al.*, 1989a; Petersen *et al.*, 1991). The cumulative offset across the zone is reported as 24 km (Sharp, 1967).

Historical Seismicity. Extensive summaries, interpretations, and earthquake history of the San Jacinto fault are given by Thatcher et al. (1975), Sanders and Kanamori (1984), Wesnousky (1986), Sanders (1989), Doser (1990), and Bent and Helmberger (1991a), and of the Imperial fault by Doser and Kanamori (1986). Seismicity between 1932 and 1992 is generally distributed along the entire length of the zone, and extends to depths ranging from about 12 km near the Superstition Hills fault, to about 18 km along the Coyote Creek and Clark faults (Fig. 5). The general decrease in the maximum depth of seismicity as one continues south along the fault has been

attributed to higher heat flow near the southern portion of the fault (Doser and Kanamori, 1986).

The occurrence rate of moderate to large earthquakes is greater along the San Jacinto than any other fault zone in southern California (Fig. 5). The 25 December 1899 (M 7.1); 22 July 1899 (M 6.5), 23 July 1923 (M 6.3), and 21 April 1918 (M 6.8) earthquakes ruptured along or near the northernmost reach of the zone (Sanders and Kanamori, 1984; Sanders et al., 1986; Thatcher et al., 1975). It has been interpreted that the 1918 earthquake produced rupture along the Claremont strand, whereas the 25 December 1899 (M 7.1) produced offset along the Casa Loma strand of the fault zone (Sanders and Kanamori, 1984; Sanders et al., 1986), but no firm evidence of surface rupture is known for any of these events. The 22 July 1899 and 1923 events may have ruptured the San Jacinto fault; however, the large uncertainties associated with locating historical events do not preclude the possibility that one or more of these earthquakes were the result of slip on other nearby faults (Sanders et al., 1986).

Farther to the south, a relocation of the 1937 (M_L 5.9) epicenter and aftershocks places the event between the Buck Ridge and Clark faults, possibly along a northeast-striking cross-fault (Sanders *et al.*, 1986). The 1954 (M_L 6.2) event is located at the southeast end of the mapped trace of the Clark fault (Sanders *et al.*, 1986). The Borrego Mountain section of the fault ruptured in an M_L 6.8 earthquake in 1968, and produced surface rup-

tures along virtually the entire length of the segment (Clark, 1972). The 1968 earthquake (e.g., Hamilton, 1972) was followed by the smaller M_L 5.8 Coyote Creek earthquake, located immediately to the north, which did not produce surface rupture and which Petersen *et al.* (1991) suggest may have occurred along a northeast-trending fault. The 1942 M_L 6.5 earthquake has been relocated southwest of the southern end of the Coyote Creek fault (Sanders *et al.*, 1986), off the main traces of the San Jacinto fault zone. Doser (1990) suggests that this

earthquake may also have occurred as a result of displacement on a northeast-striking cross-fault. Most recently, both the Superstition Hills segment as well as an intersecting cross-fault ruptured in M_L 6.6 and M_L 6.2 events, respectively, during November of 1987 (e.g., Hanks and Allen, 1989; Bent *et al.*, 1989; Sharp *et al.*, 1989).

The Imperial fault strikes southeastward from a point near Brawley to about 30 km beyond the Mexican border. Historical surface-rupturing events occurred in 1940

Figure 2. Maps showing (a) southern California seismicity (1932 through 1992 M > 1.75) recorded by CIT/USGS southern California network with faults and state outline, and (b) boxes showing regional faults, names used in text, and locations of earthquakes used for constructing cross sections between points a, b, c, and d (Fig. 4).

 $(M_L 7.1)$ and in 1979 $(M_L 6.9)$ (Sharp et al., 1982; Larsen and Reilinger, 1991) and a third event may have produced surface rupture at the northern end of the fault near Brawley in 1915 (Toppozada and Park, 1982). The 1940 earthquake produced surface rupture both north and south of the border, whereas the 1979 earthquake produced surface rupture just north of the border even though its epicenter was also located south of the border. This is consistent with the larger moment magnitude of the 1940 event (Trifunac, 1972).

Fault Slip Rate Data. Near San Bernardino the San Jacinto fault is composed of several subparallel strands. Mezger and Weldon (1983) interpreted offset terrace deposits to indicate a maximum horizontal slip rate of 2.5 mm/yr across the Lytle Creek fault (a northern extension and splay of the Claremont fault). This rate, however, probably does not reflect the entire deformation rate across this latitude of the San Jacinto fault zone (Morton, 1975). Within San Bernardino, an offset and buried stream channel has been interpreted to indicate a minimum slip rate of 1.7 to 3.3 mm/yr, but, again, the rate does not reflect offset across the entire fault zone (Wesnousky et al., 1991). Immediately south of San Bernardino, Morton et al. (1986) interpret a displaced Pleistocene conglomerate to indicate an average of 17 mm/yr during the last 0.7 m.y. Also, in proximity of the Morton et al. study, Prentice et al. (1986) estimate 6 to 13 mm/yr of slip based on stream channels that are offset 0.6 to 0.7 km and are incised into a surface interpreted to be 50,000 to 100,000 yr old.

Near Anza, in the central portion of the San Jacinto fault, Sharp (1981) placed a minimum limit of 8 to 12 mm/yr along the fault zone during the last 0.73 m.y., based on the offset of alluvial fan deposits. A more recent study by Rockwell et al. (1990a) of displaced Holocene alluvial fan and fluvial deposits indicates a similar minimum slip rate during the last 9500 yr of about 9.2 mm/yr near the same locality. In addition, Merifield et al. (1991) interpreted an offset shutter ridge, stream

Figure 3. Strip maps showing the southern San Andreas fault with geometry and cultural features mentioned in the text.

channel, and fine-grained alluvial deposits observed in trenches near Anza to indicate slip rates of 7 to 18, 10, and 9 ± 2 mm/yr, respectively, for the Clark fault.

South of Anza, along the segment of the fault that ruptured during the 1968 Borrego Mountain earthquake, Sharp (1981) interpreted geologic relations to show that slip has averaged 2.8 to 5.0 mm/yr and 1.6 to 2.2 mm/yr during about the last 40 and 6000 yr, respectively. Sharp interpreted these latter slip rates to suggest that the rate of slip has varied through time on the San Jacinto. The hypothesis of variable slip rate through time, however, conflicts with the just-mentioned Holocene measurements of slip rate near Anza reported by Rockwell et al. (1990) and may simply reflect slip rate measurements that did not account for slip across the entire San Jacinto fault zone.

Yet, farther to the south, Hudnut and Sieh (1989) investigated the recent prehistoric behavior of the Superstition Hills fault, which ruptured in 1987. They calculated a slip rate for the Superstition Hills segment of the San Jacinto fault zone, averaged over the past 330 yr between 2 and 6 mm/yr. A significant component of this slip may, however, represent motion by aseismic creep. In addition, Hudnut et al. (1989b) attributed offsets of the Lake Cahuilla shoreline to a 0.5 to 1.5 mm/yr slip rate along the northeast-trending Elmore Ranch fault; this is the only information we could find on the paleoseismic history of any of the left-lateral faults along the San Jacinto fault zone.

Seismological and geodetic observations also pro-

Figure 4. Cross sections of seismicity (1981 through 1992 M > 2) near the San Andreas fault. Endpoints a, b, c, and shown in Figure 2b.

1628

vide information regarding the recent slip rate of the San Jacinto fault zone and are in general accord with geological studies. Thatcher *et al.* (1975), for example, determined and summed the seismic moments of earthquakes along the entire fault zone since about 1890 to estimate a seismic slip rate of about 8 mm/yr along the San Jacinto fault zone. Geodetic and trilateration measurements spanning the fault south of San Bernardino are also consistent with 11 to 18 mm/yr of slip being stored elastically in a 10 to 15-km-thick crust (King and Savage, 1983; Savage and Prescott, 1976; Savage *et al.*, 1981).

Trilateration and triangulation studies between 1941 and 1987 provide an average displacement of 35 to 43 mm/yr across the Imperial fault and other nearby faults (Prescott *et al.*, 1987; Snay and Drew, 1982). Larsen and Reilinger (1991) used a slip rate of 40 mm/yr to obtain a 25-yr recurrence interval. However, this recurrence rate assumes that the 1.0-m offset in both 1940 and 1979 is entirely co-seismic and characteristic of this fault. Cohn *et al.* (1982) have documented as much as 5 mm/yr of creep on the Imperial fault prior to the 1979 event as well as significant afterslip. Therefore, a more reasonable estimate of earthquake recurrence may be about 50 to 75 yr (Larsen and Reilinger, 1991). Displaced Lake Cahuilla shoreline deposits were studied by Thomas and Rockwell (1993) near the southern Imperial fault and in-

a Fault geometry

dicate a 15 to 20-mm/yr slip rate for the past 300 yr, significantly less than obtained by the geodetic studies described above.

Paleoearthquake Data. On the basis of trenching studies, Sieh et al. (1973) documented evidence of at least two paleoearthquakes on the San Jacinto fault zone near San Bernardino, although major flooding and rapid urban development along the fault precluded successful dating of those events. Near Hog Lake in the Anza seismic gap, Klinger and Rockwell (1989) interpreted an average recurrence interval of 220 to 320 yr for the fault, based on structural and stratigraphic relations exposed in trenches. Although the frequency of prehistoric earthquakes on the Clark fault is uncertain. Merifield et al. (1991) observed stratigraphic offsets in a trench near Anza that may indicate a recurrence interval of $300 \pm 200 \text{ yr}$ for large ground-rupturing events. Along the Borrego Mountain section of the fault zone, Clark (1972) estimated an average recurrence interval of about 200 yr for tectonic events similar to the 1968 earthquake by comparing vertical components of displacement in 1968 with earlier movements recorded in offset sediments of ancient Lake Cahuilla that ranged in age from 860 to 3080

Along the Superstition Hills fault segment that ruptured in 1987, Hudnut and Sieh (1989) and Hudnut et

San Jacinto Fault zone

Figure 5. San Jacinto fault zone. (a) Map showing geometry and names of fault strands and cultural features noted in the text. (b) Map of seismicity from 1932 through 1992 recorded in CIT-USGS catalog. (c) Cross section of earthquakes from 1981 through 1992 in approximately same region as shown in (b). (d) Map showing the approximate location of historical earthquakes (stars) and aftershock zones (hachured) described by Sanders *et al.* (1986) and Petersen *et al.* (1991).

al. (1989b) place the repeat time of large surface slip events between about 150 and 300 yr for both the mainstrand as well as for the intersecting Elmore Ranch fault. Lindvall et al. (1989) also examined offset geomorphic features to determine the slip distribution of the penultimate and earlier events and found that the slip distribution of the penultimate event was similar to that observed in 1987. They further noted, however, that this similarity in slip distribution may be fortuitous if afterslip continues to increase the total slip for the 1987 earthquake.

The estimates of earthquake recurrence along the Imperial fault are primarily based on the past three historical large earthquakes shown in Figure 5. Sykes and Nishenko (1984) estimate a 32-yr recurrence interval for the Imperial fault based on the 39-yr interval between the 1940 and 1979 earthquakes as well as the 25-yr period between the 1915 and 1940 earthquake sequences. This implies a 20-mm/yr slip rate and that strain released during the 1979 earthquake had accumulated since the 1940 earthquake.

A synopsis of the fault slip rate and paleoearthquake data is provided in Table 1 and Figure 1.

Elsinore, Whittier, and Chino Faults

The Elsinore-Whittier fault zone strikes northwest from the Mexican border, a distance of about 250 km, and shows principally right-lateral displacement (Fig. 6; Hull and Nicholson, 1992). Although a considerable number of geological studies bearing on the fault slip rate have been completed, references are primarily limited to reports, guidebooks, and abstracts. A recent summary of geological reports related to the Holocene slip rate of the fault zone was provided by Anderson *et al.* (1989). Studies indicate cumulative offsets along the Elsinore fault zone between 5 and 40 km (e.g., Hull and Nicholson, 1992), whereas others (e.g., Lamar, 1990) have interpreted up to 30 km of offset along the Whittier fault.

Historical Seismicity. Historical records indicate that at least two large $(M > \sim 6)$ earthquakes have ruptured on or near the Elsinore fault zone (Fig. 6d). Toppozada and Parke (1982) interpreted isoseismal data to indicate the occurrence of an M 6 event along the section of the fault between Corona and Lake Elsinore in May 1910. Brake (1987) and Brake and Rockwell (1987) later reported the observation of a displaced flume as evidence that the Elsinore was the source of the 1910 earthquake. A large earthquake occurred in February 1892 (M 7 to 7.5) and produced Modified Mercalli intensity VII damage in San Diego (Toppozada et al., 1981). Several investigators have suggested that this event may have occurred along the Laguna Salada fault, which is the portion of the Elsinore fault south of the Coyote Mountains (Fig.

6d; Strand, 1980; Anderson *et al.*, 1989). That event produced up to 5 m of dip slip and probably 4 m of right-lateral slip over at least 22 km of the fault, suggesting a magnitude of 7.1 (Meuller and Rockwell, 1993).

Recent seismicity does not sharply delineate the trace of the fault, but rather marks a broad zone with a concentration of seismicity to the northeast of the fault (Fig. 6b). The largest earthquake that has been recorded by the seismic network and directly attributed to the Elsinore fault zone is an M_L 5.2 event in 1938. The 1990 Upland (M_L 5.3) and the 1987 Whittier Narrows (M_W 5.9) earthquakes are responsible for the two distinct clusters of seismicity observed in cross-sectional view at the northern end of the fault zone. The seismicity extends to a depth of nearly 20 km along most of the zone (Fig. 6c).

Fault Slip Rate Studies. A summary of all slip rate studies for the fault zone is provided in Table 1 and Figure 1. Slip rate estimates along the Elsinore fault vary between about 2 and 9 mm/yr. A chronosequence development and recognition of offset alluvial fans led to a slip rate estimate of between 2.6 and 9.3 mm/yr, with an interpreted best estimate of between 5.3 and 5.9 mm/ yr, during the last 250,000 yr for the section of the Elsinore fault located between Corona and Lake Elsinore (Millman and Rockwell, 1986). Similar palinspastic reconstructions of offset drainages at a site farther to the south near Agua Tibia Mountain indicate a 1.5- to 7mm/yr slip rate for the fault, with a best estimate of 3 to 6 mm/yr, over the last 600,000 yr (Vaughan and Rockwell, 1986). More recent trenching studies in that same general area indicate a 10 ± 1 m right-lateral offset of alluvial deposits over the past 2358 yr, yielding a slip rate about 4.2 mm/yr (Bergmann et al., 1993). Even farther south, offset Holocene fans in the Coyote Mountains near the international border indicate a 4- to 6-mm/ yr slip rate for the southern Elsinore fault (Rockwell and Pinault, 1986).

Slip rates estimated for the Whittier and Chino faults are considerably lower than those estimated for the Elsinore fault. Rockwell et al. (1992a) reports trenching studies and geomorphic offsets that indicate that the Whittier fault is almost pure right-lateral strike slip, although the fault dip varies dramatically near the surface. They find a slip rate of 2.5 to 3 mm/yr based on the lateral offset of a Holocene alluvial fan as well as offset 140 ka stream channels. Recent trenching studies of other nearby channel deposits across the Whittier fault by Gath et al. (1992) and Rockwell et al. suggest a minimum dextral slip rate of between 0.95 and 1.3 mm/yr for the one of two subparallel strands. Because both of the strands show similar cumulative offsets, Rockwell et al. interpret a probable minimum slip rate of about 2.6 mm/yr across both of these two strands.

Displacements observed across the Chino fault are

1630

right reverse (Heath et al., 1982). Heath et al. concluded that the Chino fault is not the principal extension of the Elsinore fault zone. Reported values of slip rate on that fault are low, ranging from 0.02 to 0.2 mm/yr. Rockwell et al. (1992a), however, suggest that since the slip rate for the Whittier fault is only half of the rate of the Elsinore fault, located just to the south, the slip transferred northward from the Elsinore fault may be accommodated equally by the Chino and Whittier faults.

Recent paleoearthquake studies suggest that several large earthquakes have occurred along the Elsinore fault zone. Rockwell et al. (1985, 1986) trenched along the Glen Ivy North strand between Corona and Lake Elsinore, and identified stratigraphic evidence within trenches excavated across the trace to interpret the occurrence of five magnitude 6 to 7 events since about 1060 A.D. On this basis, they suggest a maximum ground-breaking earthquake recurrence interval of about 250 yr. Gath et al. (1992) trenched offset channels on the Whittier fault and identified at least two events between 10 and 14 ka. Geomorphic features are offset along the southern Elsinore fault near the Coyote Mountains and indicate that six large earthquakes (M 6.5 to 7) have ruptured the southern Elsinore with average slip per event of about 1.45 m (Rockwell and Pinault, 1986). Furthermore, recent geomorphic studies by Rockwell and Pinault indicate offsets of 2.8, 2.2, and 3.2 m for the past three large earthquakes. Pinault and Rockwell (1984) suggest that these large events have a recurrence interval of about 350 yr, whereas Rockwell *et al.* (1990) update these estimates to between 600 and 1000 yr.

Newport-Inglewood Fault

The Newport-Inglewood fault strikes southeast from the Santa Monica fault, which defines the southern border of the Transverse Ranges, to near Newport Beach where it continues offshore (Bryant, 1988; Fig. 7). The 70-km onshore fault trace is discontinuous and not well expressed at the surface, but is clearly marked by a distinct series of hills and anticlines (Ziony and Yerkes, 1985). Right-lateral displacement of 1 to 2 km in lower Pliocene strata and more than 1 km of apparent vertical separation in basement rock have been documented along the zone (Yerkes *et al.*, 1965).

Historical Seismicity. The fault is not clearly delineated by the historical distribution of seismicity but, rather, is marked by a broad epicentral distribution of seismicity about the trace (Fig. 7b). A plot of M > 2 events re-

Whittier-Elsinore Fault Zone

Figure 6. Whittier fault zone. (a) Map of fault geometry and sites mentioned in text. (b) Seismicity from 1932 through 1992. (c) Depth section of earthquakes recorded for a 10-yr period from 1981 through 1990 in the same area as (1). (d) Map showing approximate location of the largest two historical earthquakes.

corded in the CIT-USGS catalog shows seismicity extending to depths of nearly 20 km (Fig. 7c). Hauksson (1987), however, indicates that depths of about 16 km more accurately describe the deepest extent of seismicity along the zone, with the greatest concentration located at depths between 6 and 11 km.

The largest earthquakes recorded by the seismic network in the vicinity of the Newport–Inglewood fault include the 1933 Long Beach (M_L 6.3; e.g., Hauksson and Gross, 1991) and the 1941 Torrance–Gardena earthquakes (M_L 5.0 and 5.4; e.g., Richter, 1958). Hauksson and Gross recently reanalyzed the 1933 earthquake sequence, finding the event to be characterized by a seismic moment of 5×10^{25} dyne-cm (M_W 6.4) and pure right-lateral offsets in the subsurface of about 85 to 120 cm. Aftershocks of the 10 March 1933 event were concentrated along an approximately 30-km segment (Fig. 7d) of the fault that extended northwest of the epicenter (Hauksson and Gross).

Fault Slip Rate Studies. Right-lateral slip along the Newport-Inglewood fault has reportedly averaged 0.3 to 0.8 mm/yr since the Late Miocene to Pliocene (Guptil and Heath, 1981; Bird and Rosenstock, 1984; Ziony and Yerkes, 1985; Anderson et al., 1989). Estimates of slip rate from offset features of Holocene to Pleistocene age

range between 0.1 and 6.0 mm/yr, with average and better-limited values equal to about 0.6 mm/yr (Clark et al., 1984). These latter values, however, reflect only the vertical component of slip, and hence, the total rate, including the horizontal component, may be greater. A synopsis of slip rate studies reported along the fault is provide in Table 1 and Figure 1.

Palos Verdes Fault

Historical Seismicity. The Palos Verdes fault extends from about 10 km north of the Palos Verdes peninsula southward at least 75 km (Fig. 8a). Recent seismicity along the fault zone has been concentrated near the northern portion of the fault (Fig. 8b) and is primarily located at depths shallower than 15 km (Fig. 8c). Although numerous small events are located near the Palos Verdes fault trace, we are aware of no historical moderate to large earthquakes along this fault.

Fault Slip Rate Studies. The fault zone is composed of several en-echelon strands that strike about 130° and dip about 70° southwest beneath the peninsula (Ziony and Yerkes, 1985). Uplifted terraces indicate that vertical motion has continued through the Pleistocene (e.g.,

Newport-Inglewood Fault Zone

Figure 7. Newport–Inglewood fault zone. (a) Map showing fault geometry and cultural features noted in text. (b) Seismicity from 1932 through 1992 (c) Cross section of earthquakes from 1981 through 1992 in approximately the same location as shown in (1). (d) Map showing the approximate location of the 1933 earthquake and aftershock zone.

Woodring et al., 1946; Valensise and Ward, 1992). Yerkes et al. (1965) reported a 1.8-km vertical separation, southwest side up, of Catalina Schist basement rock.

Marine reflection data indicates that beds considered of Holocene age have been offset by the fault (Clarke et al., 1985; Darrow and Fisher, 1983), but these data provide no clear evidence for horizontal offset along the fault. Clark et al. (1984) interpreted the observations of Darrow and Fisher (1983) to indicate a vertical fault slip rate between 0.02 and 0.7 mm/yr. More recently, Valensise and Ward (1992) attributed the uplift of several marine terraces (235 to 668 ka) on the flanks of the Palos Verdes peninsula to be the result of 3.0 mm/yr of dip-slip motion along the Palos Verdes fault.

Subsidiary Faults. In close proximity to the Palos Verdes fault are two subsidiary faults, the Cabrillo and Redondo Canyon faults (Nardin and Henyey, 1978). The 18-kmlong Cabrillo fault displaces Miocene strata but apparently does not displace the sea floor (Clarke et al., 1985). The fault strikes about 155° and dips 65° to the east (Ziony and Yerkes, 1985). Darrow and Fisher (1983) report that the portion of the Cabrillo fault that extends offshore has a slip rate of about 0.7 mm/yr. Valensise and Ward (1992), however, suggest that the Cabrillo fault displaces the youngest emergent terraces by only a few tens of meters, which leads to a slip rate of about 0.1 mm/yr, and that it may root in the Palos Verdes mainstrand at relatively shallow depth.

The Redondo Canyon fault is about 13-km long, intersects the Palos Verdes fault on the northern Palos Verdes peninsula, and cuts both the sea floor and Holo-

cene deposits on the shelf (Nardin and Henyey, 1978; Clarke et al., 1985). The fault strikes about 80°, subparallel with the Redondo submarine canyon, but the dip is unknown (Ziony and Yerkes, 1985). Clarke et al. summarize two views regarding the slip distribution north of Palos Verdes peninsula; one in which the northern portion of the Palos Verdes fault accommodates most of the slip and another in which the Redondo Canyon fault accommodates the slip through south-over-north reverse faulting. Slip rate and paleoearthquake data for the Palos Verdes fault are tabulated in Table 1 and Figure 1.

Rose Canyon Fault

The Rose Canyon fault cuts San Diego in southern-most California and extends offshore (Fig. 9). The fault has a complicated geometry with strands that display normal, reverse, and right-lateral motion (Treiman, 1993). Several associated splays extend offshore and displace seafloor sediments of the Holocene age (Greene and Kennedy, 1987) including the Silver Strand, Coronado, and Spanish Bright faults (Fig. 9).

Seismicity is quite low and diffuse along the zone with most of the seismicity located near the San Diego bay, along the southern portion of the fault. However, earthquake swarms in 1985 and 1986 included three M = 4 earthquakes (Treiman, 1993). Toppozada et al. (1981) also found evidence from historical reports of damage in San Diego for two pre-1900 earthquakes in 1862 (M 5.9) and 1800 (M 6.5). Moreover, Lindvall et al. (1990) found evidence for the occurrence of multiple magnitude 6+ Holocene earthquakes along this zone.

50 km

 $0 \, \mathrm{km}$

100 km

Figure 8. Palos Verdes fault zone. (a) Map showing fault geometry with cultural features noted in the text. (b) Seismicity from 1932 through 1992. (c) Cross section of earthquakes from 1981 through 1992 in approximately the same region as shown in (b).

Trench studies across the principal strand of the Rose Canyon fault zone give evidence of a minimum 8.7 m of dextral slip and less than 1-m dip-slip offsets of strata about 8200 yr old (Rockwell $et\ al.$, 1991). The minimum offset and the maximum age yield a minimum slip rate estimate of 1.07 ± 0.03 mm/yr for this strand of the Rose Canyon fault. Other mapped faults, located to the east and west of this principal strand, may also have Holocene activity and, therefore, this slip rate may substantially underestimate the total seismic slip rate for the entire fault zone (Rockwell $et\ al.$). Slip rate and paleoearthquake data for the Rose Canyon fault are tabulated in Table 1 and Figure 1.

Transverse Ranges

Central Transverse Ranges

Historical Seismicity. The central Transverse Range is taken here to encompass those Quaternary faults shown in Figure 10a, several of which have ruptured in moderate to large earthquakes. A large thrust event produced

Rose Canyon Fault Fault geometry 32.7 32.6 km San Diego 117.1 San Bay Diego Coronado 117.2 Spanish Bright Point Lòma Mission Bay 117.3

Seismicity (1932-1992 M>2)

Figure 9. Rose Canyon fault zone. (a) Map showing the geometry and names of several fault strands. (b) Seismicity from 1932 through 1992 along the fault zone.

clear surface rupture in the M_W 6.7 San Fernando earthquake of 9 February 1971 (Fig. 10a; Wyss, 1971). The Clamshell-Sawpit Canyon fault produced a moderate (M_L 5.8) reverse-type earthquake on 28 June 1991 (Hauksson, 1992). Focal mechanisms and aftershocks of the M_L 5.3 event of 28 February 1990 and the M_L 5.0 event of 3 December 1988 showed principally strike-slip displacements along the San Jose and Raymond faults, respectively (Hauksson and Jones, 1991; Jones et al., 1990). The 1987 M_L 5.9 Whittier Narrows earthquake produced reverse motion on what has since been known as the Elysian Park thrust system (Hauksson). More recently, the M_S 6.8 Northridge earthquake of 17 January 1994 ruptured on a south-dipping thrust fault located just southwest of the 1971 rupture (Fig. 10a; Petersen, 1994). But for the clustered seismicity marking the aftershocks of these earthquakes, seismicity is rather distributed and does not clearly delineate any particular fault planes (Fig. 10b). Slip rate and paleoearthquake data for the major faults of the region are discussed below and tabulated in Table 1 and Figure 1.

Fault Slip Rate Studies. The southern base of the San Gabriel Mountains is composed of a series of 13 to 20km-long north-dipping reverse faults that comprise the Sierra Madre fault zone (Crook et al., 1987). Proctor et al. (1972) observed that the Sierra Madre fault zone is composed of a number of discrete arcuate segments, each separated by a transverse structural discontinuity. Ehlig (1975) argued that because of the difference in structural character of the segments, it is unlikely that a single earthquake will be associated with rupture along more than one of these segments. More recently, Crook et al. observed that the freshness of fault-related morphology varies significantly between different segments, in agreement with Ehlig's hypothesis. They further conducted trenching studies and observed evidence of late Pleistocene faulting along those segments labeled B, C and D in Figure 10a, but no evidence of Holocene displacement. These observations were the basis to suggest that the individual segments are characterized by recurrence intervals of 5000 yr or more. Clark et al. (1984) further interpreted the mapping and trench data of Crook et al. to place the slip rate across these strands at between 0.36 and 4 mm/yr.

Sites along the San Fernando fault were excavated immediately following the 1971 earthquake by Bonilla (1973). He reported evidence of a prior rupture along the same trace between 100 and 300 yr ago, suggesting an average recurrence interval of about 200 yr. Along the Cucamonga fault, Morton and Matti (1987) found the height and age distribution of fault scarps to be consistent with an average repeat time of 2-m displacements every 684 yr. Morton and Matti also interpreted alluvial fan surface offsets to place a minimum slip rate of 4.5 to 5.5 mm/yr during the last 13,000 yr. They suggest

that the Cucamonga fault has been seismically more active for the past 4000 yr than the remainder of the Sierra Madre fault zone.

The San Gabriel fault is 90-km long and has accumulated as much as 60 km of right-lateral offset (Weber, 1979; Yeats et al., 1992), although the total offset may be significantly lower along certain portions of the fault (Weber). Evidence of Holocene displacements has been reported (Hart et al., 1988) and Weber also reported offsets of latest Quaternary terrace, fan, and landslide deposits. Geologic surface mapping, geomorphic studies, and construction of detailed cross sections by Weber and Yeats et al. place the right-lateral slip rate since Miocene time at between 0.5 and 6.6 mm/yr. Because latest Quaternary offsets are principally vertical and show little or no right-lateral offset, the Quaternary rate of movement along the fault is generally considered to be less than 0.5 to 1 mm/yr (Weber; Yeats et al.).

The Raymond, Hollywood, and Santa Monica fault zones mark the northern limit of the Los Angeles basin.

(Fig. 10a). Real (1987) indicates that displacement, as inferred from earthquake mechanisms, is primarily reverse with a significant left-lateral component along this fault trend. Crook et al. (1987) interpret rates of sedimentation in a faulted sag pond to infer a vertical slip rate along the Raymond fault of 0.10 to 0.22 mm/yr. They suggest that the Raymond fault has an average recurrence time for large earthquakes of 3000 yr. Observations from trenches emplaced across the fault further indicate the occurrence of eight events with an average displacement of 0.4 m/event during the last 36,000 yr. An offset river terrace surface is reported by Clark et al. (1984) as the basis for interpreting the vertical component of slip across the adjacent Hollywood fault to equal 0.33 to 0.75 mm/yr. An offset marine wave-cut platform implies a 0.27 to 0.39 mm/yr vertical slip rate for the Santa Monica fault (Clark et al.). Dibblee (1982) estimates 16 km of left-lateral offset along the Santa Monica fault based on the presence of Santa Monica slate observed in three drill holes south of the fault and from

Figure 10. Central Transverse ranges faults. (a) Map showing faults and extent of aftershock zones (shaded) of large earthquakes. (b) Seismicity 1932 through 1992.

outcrops of the same rock located north of the fault. This estimated 16-km offset of Santa Monica slate has been used by Molnar (1991) to infer a much higher left-lateral slip rate of 3 to 4 mm/yr for the Santa Monica fault averaged over the last 4 to 5 m.y.

Western Transverse Range

Historical Seismicity. Quaternary faults of the western Transverse region are shown in Figure 11a. The faults have not been the source of any major earthquakes during historical time, although several magnitude 5 to 6 events have been recorded in the area (Fig. 11a). The M_L 6.0 Pt. Mugu earthquake of 21 February 1973 produced reverse motion on a fault that extends westward from the Santa Monica fault (Bent and Helmberger, 1991b). Moderate earthquakes of about magnitude 5 also occurred within Santa Monica bay on 30 August 1930; 1 January 1979; and 19 January 1989 (Hauksson, 1992). The M_w 6.0 earthquake of 4 September 1981 occurred offshore and showed strike-slip offset with aftershocks that trend northwest (Hauksson). Examination of an epicentral map for the region shows that concentrations of seismicity are generally limited to the aftershock zones of the events just mentioned (Fig. 11b). In addition, several moderate to large earthquakes have occurred near the Santa Barbara channel on 21 December 1812 (M 7.1), 29 June 1925 (M 6.3), 4 November 1927 (M 6.2), and 1 July 1941 (M 5.5; Toppozada et al., 1981; Toppozada and Parke, 1982). The following paragraphs outline the known information regarding the slip rates of Quaternary faults in the region (Fig. 1; Table 1).

Fault Slip Rate Studies. Strands of the Malibu Coast fault located within the city of Malibu were reported by Rzonca et al. (1991) to offset Holocene soils. Displacement of a marine wave-cut platform by that fault is consistent with a vertical slip rate of 0.04 to 0.09 mm/yr (Clark et al., 1984). Molnar (1991) however, interprets 100-m offset stream courses along the Malibu Coast fault to have formed during the past 20,000 yr and obtains a much higher left-lateral slip rate of about 5 mm/yr for the fault zone. He also interprets a 16-km offset of Santa Monica slate (Dibblee, 1982) to infer a left-lateral slip rate of 3 to 4 mm/yr for the Malibu Coast fault over the last 4 to 5 m.y. The Santa Cruz Island fault may possibly be a westward continuation of the Malibu fault, and the sense of slip is probably left lateral with a component of reverse (Molnar; Dibblee). Sorlien and Pinter (1991) report a vertical slip rate for the Santa Cruz fault of less than 1 mm/yr, but they admit that the strike-slip component of motion remains unconstrained. The most recent rupture on the fault is no older than 11.78 ± 0.1 ka, based on offsets of dated terrace gravels (Pinter and Sorlien, 1991).

The Santa Susana fault dips north and offsets strata

with reverse motion. The displacement history has been discussed by Yeats (1979, 1986, 1987). There is no reported evidence of Holocene movement except for a small segment located near the 1971 San Fernando earthquake (Yeats, 1987). This lack of Holocene uplift data may be related to the stratigraphic relationships in which the rocks of the hanging wall are much older than the faulting (Yeats, 1987). The slip rate of the fault during the last 0.5 to 2.0 m.y. has averaged greater than 2 to 8 mm/ yr, based on a 4-km stratigraphic separation of the Modelo formation in the subsurface (Yeats, 1987). Molnar (1991) noted, however, that slight contrasts in stratigraphy across the fault limits the determination of vertical offsets, and therefore, the reported 4-km offset of the Modelo formation may be an overestimate. A trench emplaced across the fault zone was the basis for Lung and Weick (1987) to speculate that the fault has not produced surface rupture during the last 10,000 yr.

The Oak Ridge fault strikes westward from the Santa Susana fault into the Santa Barbara Channel and also shows reverse motion. Based on the analysis of well logs, Yeats (1988) recognized a 2375- to 2490-m vertical offset of shallow marine and nonmarine clastic sediments of the Saugus formation (age 0.2 to 0.4 m.y.) and placed the slip rate at between 5.9 and 12.5 mm/yr. A northsouth cross section through the Ventura basin shown in Yeats (1983) shows apparent reverse slip of a 1 m.y. horizon to be about 3.5 km, indicating a 3.5-mm/yr slip rate averaged over this longer period of time. It is not clear whether these rates are also reflective of the offshore extension of the Oak Ridge fault.

The San Cayetano fault is a major reverse fault that reportedly displaces the entire seismogenic layer (Molnar, 1991), extends about 40 km in length, and is divisible into two principal parts marked near its center by a distinct lateral ramp (Rockwell, 1988). Evidence of both late Pleistocene and Holocene offsets has been interpreted by Rockwell to indicate a slip rate between 3 and 9 mm/yr along the fault. He indicates that the lower slip rate of 3 mm/yr reflects the rate determined by upper Pleistocene and Holocene offsets, whereas the slip rate of 9 mm/yr reflects averages over a much longer period of time, suggesting that the rate of slip has decreased through time (Rockwell). A north-south cross section through the Ventura basin shown in Yeats (1983) and Huftile and Yeats (1992) shows an apparent 9-km offset of a 1-m.y. horizon and a 2.6-km offset of a 0.3 ± 0.1 m.y. horizon, respectively, indicating a 9-mm/yr slip rate. Molnar, however, reinterpreted the cross sections of Yeats and Rockwell to indicate a 7-mm/yr slip rate for the San Cayetano fault.

The Red Mountain fault is a west-striking reverse fault that dips to the north and is located adjacent to the San Cayetano fault. Seismicity (M < 3.0) along the fault indicates a fault dip of 60° and extends to 12-km depth (Yeats *et al.*, 1987). Unlike the San Cayetano fault, nei-

1636 Review

ther the Fernando nor the Saugus formations are preserved on the hanging-wall of this fault; therefore, a direct determination of slip in the last few hundred thousand years from well-log data is problematic (Yeats, 1988). Yeats (1988) assumes the slip rate is in the same general range as determined for the Oak Ridge fault (5.9 to 12.5 mm/yr). More recently, the observations of Huftile and Yeats (1992) loosely constrain the slip rate at between 0.7 and 18 mm/yr during the last 250 ± 50 ka y, based on the interpretation of subsurface well-log data. However, Clark *et al.* (1984) report observations from Lajoie *et al.* (1982), Lee *et al.* (1979), Sarna-Wojcicki *et al.* (1979), Yerkes and Lee (1979), and Yeats (1982) bearing on the offset of marine platforms to interpret a cu-

mulative reverse slip rate for the fault equal to 0.9 to 2.3 mm/yr during the last 45,000 to 60,000 yr.

The Javon Canyon and Ventura faults are also north-dipping thrusts and cut the California coast between the Red Mountain and Oak Ridge faults. Clark et al. (1984) report investigations of a displaced alluvial fan to place the slip rate of the Ventura fault at between 0.8 to 2.4 mm/yr during the last 5700 to 15,000 yr. Sarna-Wojcicki et al. (1987) interpret offset stream and marine terraces to indicate a relatively steady 1.1 mm/yr slip rate across the Javon Canyon fault during the last 45,000 yr. They also report evidence of five paleoearthquakes across the fault during the last 3500 yr, with throw ranging from 0.4 to 1.3 m in each event. The Padre Juan fault, also

Figure 11. Western Transverse ranges faults. (a) Map showing faults and extent of aftershock zones (shaded) of large earthquakes. (b) Seismicity 1932 through 1992.

within Javon Canyon, offsets a marine platform, and is interpreted to have a vertical slip rate between >1.4 and 0.5 mm/yr during the last 45,000 to 60,000 yr (Clark *et al.*).

Yeats (1982) and Yeats et al. (1981) suggest that the Javon Canyon and Ventura faults may reflect slip along bedding planes in response to flexural slip during folding, and hence, may not constitute a seismic shaking hazard because they do not extend downward to rocks of high shear strength. Sarna-Wojcicki et al. (1987) and Sarna-Wojcicki and Yerkes (1982) argue, however, that evidence supporting such an interpretation for these faults is at best inconclusive. This controversy may also be applicable to the other numerous flexural-slip faults within the Ventura Basin, most of which are limited to about 5-km length in map view. In particular, the Santa Ana (south branch), Villanova, La Vista, Devil's Gulch, and Oak View faults, located just south of the Arroyo Parida-Santa Ana fault (Yeats, 1982 Keller et al. 1982b), were determined by Rockwell et al. (1984) to have vertical slip rates ranging between about 0.3 to 0.4 mm/yr during the last $38,000 \pm 500$ yr. The Thorpe, Orcutt, Culbertson, and Rudolf faults, just south of the central San Cayetano fault, represent the same style of deformation (Keller et al., 1982b; Yeats et al., 1981). Clark et al. (1984) interpreted data reported in Rockwell (1983) to indicate the slip rates of these faults have been 0 to 2.5 mm/yr during the last 5000 yr.

The Arroyo Parida fault is a thrust fault that extends westward to the coast from an intersection with the San Cayetano fault. A suite of progressively offset river terraces place the vertical slip rate of the fault at 0.37 ± 0.02 mm/yr during the last 38,000 yr (Rockwell *et al.*, 1984). An offset marine platform is the basis for Clark *et al.* (1984) to report a vertical slip rate greater than 0.3 mm/yr for the More Ranch fault, a shorter thrust that splays off the Arroyo Parida fault in the vicinity of Santa Barbara.

Subparallel and north of the Arroyo Parida-Santa Ana fault is the Santa Ynez fault. This fault is 160 km in length and is, therefore, one of the longest faults west of the San Andreas. The fault has not been thoroughly studied, and hence, the total offset and sense of slip related to this fault remain enigmatic. Dibblee (1987), however, indicates that a left-slip component is strongly suggested by the oblique west-northwest trend of associated fold axes and by offset draining canyons of the Santa Ynez Range. He notes that the Santa Ynez fault is also composed of a younger south-dipping thrust that offsets sediments just south of the main strand. Near the fault intersection with the coast, offset fluvial gravels are interpreted to indicate a 0.4-mm/yr vertical slip rate (Clark et al., 1984). In addition, Darrow and Sylvester (1984) excavated a series of trenches across the fault and observed 5 to 10-m left-lateral separation of a buried stream bank. They indicate that the displaced stream terraces are late Pleistocene to Holocene in age. Along strike and farther inland, however, the best estimate of the vertical slip rate is about 1 mm/yr (Clark et al.). Rockwell et al. (1992b) studied the southern strand of the Santa Ynez fault and described 5-m vertical offset terraces with ages of about 80 to 105 ka. This yields a vertical slip rate of about 0.05 mm/yr for the southern strand of the Santa Ynez fault. These observations allow a similar, but not greater, strike-slip component.

The Big Pine fault is primarily a left-lateral fault located near the northern boundary of the Transverse Ranges (Hill and Dibblee, 1953). The Big Pine fault offsets the Ozena fault, which has displaced late Pliocene sediments up to 13 km (Molnar, 1991). In addition, the Maldulce Syncline located just northwest of the Ozena fault is offset about 16 km by the Big Pine fault (Molnar). From these offset features, Molnar suggests a slip rate of 4 ± 3 mm/yr for the Big Pine fault. However, recent geodetic analyses of the Los Padres—Tehachapi trilateration networks indicate left-lateral slip of 15 ± 6 mm/yr on the Big Pine faults (Eberhart-Phillips *et al.*, 1990), although they admit that this slip rate may include motion on more than a single vertical fault.

Eastern Transverse Range

The eastern Transverse Range consists principally of the San Bernardino Mountains (Fig. 12a). Seismicity along the eastern Transverse Ranges is quite scattered, as with seismicity along other parts of the range, but appears to be primarily associated with the San Andreas, San Jacinto, and faults associated with the 1992 Landers earthquake sequence (Fig. 12b). Nicholson *et al.* (1986) indicate that earthquakes extend to 22-km depth and have mechanisms that indicate primarily oblique slip with a large component of reverse motion. Published slip rate data are summarized in Table 1 and Figure 1.

Meisling (1984) and Miller (1987) have documented Quaternary displacements across the major faults that bound the San Bernardino Mountains to the north. We were only able to find slip rate estimates for the Cleghorn, Ord Mountain, and Sky High Ranch faults (Meisling). The left-lateral Cleghorn fault has reportedly slipped at a rate of 2 to 4 mm/yr during the last 50,000 to 100,000 yr (Meisling and Weldon, 1982a, b). Whereas the preferred Quaternary slip rate along the Ord Mountain fault is 0.1 mm/yr, estimates of slip along the Sky High Ranch fault are greater than 1.3 mm/yr (Meisling and Weldon). Farther to the east, the only reported slip rate for the Pinto Mountain fault is 0.3 to 5.3 mm/yr and is based on the offset of Miocene rocks (Anderson, 1979).

Mojave Faults

A number of faults with Quaternary displacement strike northwest across the Mojave desert, show rightlateral displacements, and are characterized by anastomosing and en-echelon segments (Fig. 13a). Evidence from recent seismicity, geodetic strain measurements, and ground rupture indicate that the regional shear east of the San Andreas fault is concentrated between the Helendale and Ludlow faults of the Mojave Desert (Dokka and Travis, 1990b). Dokka and Travis suggest that these Mojave faults, known collectively as the eastern California or Mojave shear zone, accommodate between 9 and 23% of the total relative motion between the Pacific and North American plates.

Several moderate to large earthquakes have ruptured

Mojave faults, including the following: the 1975 Galway Lake (M 5.2), the 1979 Homestead Valley (M 5.6), and the 22 April 1992 Joshua Tree (M 6.1) earthquakes (California, 1992). In addition, on 28 June 1992 the Landers earthquake (M 7.5) ruptured to the surface along about 80 km of several right-lateral faults and was followed about 3 hr later by the Big Bear earthquake (M 6.5) that ruptured a left-lateral fault located about 40 km to the east (California). Recent seismicity between 1932 and 1992, shown in Figure 13b, indicates that most of the

Eastern Transverse Ranges

Figure 12. Eastern Transverse ranges faults. (a) Map showing faults and extent of aftershock zones (shaded) of large earthquakes. (b) Seismicity 1932 through 1992.

seismicity does not clearly delineate movement along specific faults, with the exception of aftershocks of the 1992 Landers sequence aftershocks.

Analyses of geodetic networks across the region are consistent with about 8 mm/yr of cumulative right-lateral shear being distributed across the northwesterly striking suite of faults (Sauber et al., 1986; Savage et

al., 1990). This rate is similar to the long-term rate of 6 to 12 mm/yr for the past 10 m.y. that has been suggested from the observed geologic offsets across the fault zone (Dokka and Travis, 1990b).

Hart et al. (1988) mapped Holocene fault scarps, truncated spurs, closed depressions, and also the offset of a late Quaternary lava field associated with the Pisgah

Figure 13. Mojave desert faults. (a) Map showing faults and extent of after-shock zones (shaded) of large earthquakes. (b) Seismicity 1932 through 1992.

fault. They interpret these offsets to indicate a slip rate of about 0.8 mm/yr. In addition, they observed offset late Quaternary geomorphic features along the Calico fault that suggest a slip rate similar to that observed along the Pisgah fault. Dokka (1983) and Dokka and Travis (1990a) document cumulative right-lateral displacements along the Lenwood (1.5 to 3.0 km), Calico-Blackwater (8.5 to 9.6 km), Rodman-Pisgah (6.4 to 14.4 km), Helendale (3.0 km), Camp Rock (1.6 to 4.0 km), Bristol Mountain (>6.0 km), and Harper-Gravel Hills (<3.2 km) faults. Offset along the Mojave faults commenced between 2 and 20 m.y. ago (Dokka). However, the preferred age of conception of faulting is between 10 and 6 m.y. ago in the central Mojave, and perhaps as recently as between 1.5 and 0.5 m.y. ago in the southcentral Mojave (Dokka and Travis). It is these values that are the basis for the slip rate estimates for these faults in the accompanying table (Table 1, Fig. 1). The mean of the maximum and minimum slip rates from Table 1 include the following: 0.8 mm/yr for the Lenwood, 2.6 mm/yr for the Calico-Blackwater, 3.8 mm/yr for the Rodman-Pisgah, 0.8 mm/yr for the Helendale, 1.0 mm/ yr for the Camp Rock, 1.7 mm/yr for the Bristol Mountain, and 0.9 mm/yr for the Harper-Gravel Hills faults. These slip rates are generally consistent with the 8 mm/ yr slip rate determined from geodetic analysis described above.

Preliminary results from three trenching studies along faults that ruptured during the 1992 Landers earthquake suggest that the recurrence interval for large earthquakes is an order of magnitude longer than on major faults of the San Andreas system. Hecker *et al.* (1993) described

evidence from trenching for three pre-1992 events across the section of the Homestead Valley fault that ruptured during the 1992 Landers earthquake. Assuming an offset of between 3 and 3.75 m for the penultimate event that occurred 5.7 to 8.5 ka, they obtain a slip rate of 0.4 to 0.6 mm/yr. Other trenching studies along the Emerson fault (Rubin and Sieh, 1993) suggest a slip rate of 0.2 to 0.7 mm/yr with the last earthquake occurring about 9000 ka. Moreover, trenching along the northern Johnson Valley fault (Herzberg and Rockwell, 1993) also indicates that the previous event occurred about 9 ka.

Garlock Fault

Historical Seismicity. The Garlock fault is 250-km long, trends east-northeast, shows left-lateral offset, and separates the Mojave block to the south from the Sierra Nevada and Basin and Range province to the north and east (Fig. 14a). Between 48 and 64 km of left-lateral displacement has been documented across the Garlock fault (e.g., Davis and Burchfiel, 1973).

The character of the Garlock fault changes between the west and east portions of the fault (Fig. 14b). West of Koehn Lake, the fault shows a relatively complex fault trace, produces continuous low seismic activity, and locally exhibits aseismic creep. On the other hand, the east portion of the fault produces very few small earthquakes, is not known to exhibit aseismic creep, and is characterized by a relatively simple fault trace (Astiz and Allen, 1983). Seismicity extends to depths of 25 km or greater near the intersection with the San Andreas, al-

Figure 14. Garlock fault. (a) Map showing fault geometry, adjacent faults, and cultural features. (b) Seismicity 1932 through 1992. (c) Cross section of seismicity 1981 through 1992 in approximately the same region as shown in (b).

though it generally appears limited to depths of less than 15 km elsewhere (Fig. 14c). No events sufficient to produce surface rupture have occurred along the fault historically.

Fault Slip Rate Studies. The Garlock has been the subject of numerous slip rate studies during the last 2 decades. Summaries of these studies have been put forth by both Astiz and Allen (1983) and McGill and Sieh (1991). A 1- to 3-mm/yr slip rate for the western portion of the fault is argued by La Violette et al. (1980) from observation of a 0.3-km offset of several stream channels incised into a Late Pleistocene surface. An approximately 11,000-yr-old lacustrine bar deposit at Koehn Lake is offset by the fault and interpreted to reflect a 5 to 8mm/¹⁴C-yr rate of slip (Clark and Lajoie, 1974). A preferred estimate of 11 mm/yr is quoted by Carter (1980, 1982) for the fault west of Koehn Lake, based on an observation of an offset alluvial gravel deposit. Also west of Koehn Lake, Smith (1975) interpreted the 8-m offset of a former stream channel on an 8000- to 10,000-yrold surface to indicate a slip rate of about 1 mm/yr, although McGill and Sieh argue that the rate is a minimum because the channel may reflect incision well after deposition of the gravel forming the surface. McGill (1992b) and McGill and Sieh (1993) document a 4- to 9-mm/yr slip rate on the basis of an offset shoreline of Searles Lake. In addition, an offset channel near the Owl Lake fault, a splay that extends about 19 km northeastward from the Garlock fault, suggests a 1- to 3-mm/yr slip rate (McGill, 1993). Geodetic studies of the Los Padres-Tehachapi trilateration networks indicates 11 ± 2 mm/yr of left-lateral motion below a depth of 10 km for the Garlock fault (Eberhart-Phillips et al., 1990).

Paleoearthquake Studies. McGill and Sieh (1991) observed geomorphic features along the eastern half of the fault and suggest that displacement during the last several earthquakes ranged from 4 to 7 m, 2 to 3 m, and 2 to 4 m near the El Paso Mountains, Searles Valley, and the Pilot Knob area, respectively. They interpreted the Holocene slip rate at those same three sites at between 4 to 7 mm/yr, 4 to 9 mm/yr, and 3 to 9 mm/yr, respectively. Dividing the observed offsets by the range of slip rates led them to estimate the recurrence interval of events of magnitude greater than about 7 at between 200 and 1300 yr at points west of Quail Mountain. Similarly, to the east of the Quail Mountains, McGill and Sieh observe geomorphic expression of 2- to 3-m offsets and place a 1- to 9-mm/yr limit on the fault slip rate to arrive at bounds on the recurrence interval between 200 to 3000 yr. More direct identification and dating of paleoearthquakes has been problematic and is limited to paleoseismic investigations to the west (La Violette et al., 1980) and east (McGill, 1992a, b) of Koehn Lake; these results suggest that the maximum age of surface rupture events equals about 980 ¹⁴C yr B.P. and 1490 A.D., respectively. McGill (1993) indicates a 150 to 590 A.D. maximum age of the most recent surface rupture within 2 km from the easternmost end of the fault. The paleoearthquake and fault slip rate data are summarized in Table 1 and Figure 1.

Continental Borderland

A number of mapped faults strike northwesterly along the continental borderlands. Geomorphic features such as linear escarpments and closed depressions observed along a number of the faults are similar to geomorphic features observed along active subaerial wrench faults in southern California, suggesting that they may also be capable of producing large earthquakes (Legg et al., 1989). The idea is somewhat enforced by the occurrence of earthquake clusters and several moderate-sized earthquakes that have occurred along the faults during the last 50 yr (Hauksson and Jones, 1988; Legg, 1980). The Agua Blanca and San Miguel faults of Baja California (Fig. 15) mark landward extensions of the borderland faults and, in each case, show clear evidence of Holocene activity. Mapping of Quaternary deposits places the slip rates of the Agua Blanca (Rockwell et al. 1987) and San Miguel (Hirabayashi et al. 1993a, b) faults at about 6 mm/yr and 0.2 to 0.5 mm/yr, respectively. Moreover, a number of moderate to large historical earthquakes resulted in surface ruptures along the San Miguel fault in 1956 (Shor and Roberts, 1958; Doser, 1992). In a kinematic sense, it is reasonable to extrapolate the 4 to 6 mm/yr of slip observed on the Agua Blanca to be distributed between the major system of borderland faults to the north.

The major northwest-striking fault zones of the borderland include the Newport-Inglewood and Rose Canyon, the Palos Verdes Hills and Coronado Bank, the San Diego Trough and Bahia Soleda, and the San Clemente and San Isidro fault zones (Fig. 15). Although clearly marked from seismic reflection studies (e.g., Greene and Kennedy, 1987; Legg, 1991), little direct information is currently available regarding the slip rates of any of the faults.

Fisher and Mills (1991) used seismic reflection data to map the geology of the inner coastal margin near the 240-km-long offshore section of fault between the Newport–Inglewood and Rose Canyon fault zones (Fig. 15). They interpret the data to suggest a late Holocene slip rate of 1.3 to 2.1 mm/yr for the northern 43-km offshore segment, 0.8 mm/yr for the 32-km central segment, and 1.3 mm/yr for the 34-km southernmost portion of the fault, which is immediately north of the Rose Canyon fault. We are not aware of any other information bearing directly on the Quaternary slip rate of borderland faults.

Blind Thrusts

Another aspect of seismic hazard that has come to light in the last decade is the seismic potential of blind thrusts, low-angle detachment faults that do not reach the surface but often produce folded sediments at the surface. Recent examples of earthquakes occurring on such structures are the 21 May 1983 M_L 6.5 Coalinga earthquake in central California and the more recent 1 October 1987 M_L 5.9 Whittier Narrows earthquake (Fig. 10) in the Los Angeles Basin (Stein and Ekstrom, 1992; Hauksson and Jones, 1989). Because the surficial expression of blind thrusts is generally more subtle than that manifested by major faults that cut the entirety of the seismogenic layer, information regarding the spatial extent and rate of movement on these structures arises principally from the study of subsurface structural geology. An approximate picture of the surface extent of the major blind thrust faults thus far identified in southern California from interpretation of seismic reflection and borehole observations is shown in Figure 15. The figure is adapted primarily from the work of Shaw (1993). The distribution of blind thrust systems shown in Figure 15 is likely not complete. For example, it has been speculated that similar thrust systems also underlie the northern coastline of the Santa Barbara Channel and the Ventura basin (Namson and Davis, 1988; Shaw).

The Elysian Park fold and thrust belt was recognized by mapping of fold axes near the flanks of the Los Angeles basin and observation of earthquakes showing thrusttype mechanisms, of which the 1987 Whittier Narrows earthquake is the primary example (Davis et al., 1989; Hauksson, 1990). Analysis of structural cross sections provided Namson and Davis (1988) and Davis et al. evidence to suggest that the Elysian Park thrust has slipped at an average rate of 2.9 to 5.2 mm/yr during the last 2 to 4 m.y. Shaw (1993) used a fault-bend model to interpret seismic data and arrived at a similar 1.7-mm/ yr rate for the same structure and time period. Detailed mapping of Quaternary deposits and geomorphic surfaces by Bullard and Lettis (1991), however, has been used to interpret much lower slip rates along the Elysian Park anticlinorium of only 0.1 mm/yr, although they admit that this slip rate is based on terrace ages that are as yet poorly constrained. It has been noted that the high 2.9 to 5.2-mm/yr rate should produce events of similar size to Whittier narrows every 5.6 to 11.6 yr along the thrust, which is more frequent than observed during the last 50 yr of instrumental recording (Namson and Davis, 1988; Davis et al., 1989). The contradiction with the

Figure 15. Map showing faults of continental borderland and blind thrust faults in southern California.

historic record may be only apparent if slip on the thrust is more characteristically released in very large events with longer repeat times.

The Compton fold and thrust belt extends beneath the Newport–Inglewood and Palos Verdes faults (Fig. 15). The structure is manifested by the location and trend of the Compton and Torrance–Wilmington fold systems (Shaw, 1993) and may represent more than a single seismogenic source (Hauksson, 1992; Davis *et al.*, 1989). Construction and interpretation of retrodeformable cross sections have resulted in an estimated slip rate of 1.9 to 3.5 mm/yr for the past 2.2 to 4.0 m.y. (Davis *et al.*). Based on an analysis of syntectonic deformed sediments, Shaw (1993) further estimates a 1.4-mm/yr slip rate for the structure during late Pliocene and Quaternary time and a recurrence time of 800 to 2000 yr for M_s 6.4 to 7.2 earthquakes on the structure.

The Santa Monica blind thrust system has been inferred from both the presence of fold trends and aspects of historical seismicity (Hauksson, 1992; Shaw, 1993), but we are aware of no information bearing on the slip rate characterizing the system. Westward and offshore of the Santa Monica blind thrust system, Shaw (1993) has interpreted subsurface data to define two buried thrust systems in the Santa Barbara Channel; the west and east Channel Island thrusts (Fig. 15). The slip rate across the structures since late Pliocene is reportedly 1.3 mm/yr (Shaw).

The study of blind thrusts and their relationship to seismic hazard is still in its infancy. Recognition of the seismic potential of such events dates back only about 10 yr to the 1983 Coalinga earthquake (e.g., Stein and Ekstrom, 1992). Current structural studies, although tremendously enlightening, are limited because the slip rate estimates reflect motion averaged over millions of years, rather than a period of thousands or tens of thousands of years generally considered in the study of late Quaternary and Holocene deposits along active fault traces. The question thus arises of whether or not the rates averaged over millions of years are reflecting the current rate of motion on the structures. Also, it should be noted that unknown uncertainties arise in the use of retrodeformable cross sections to estimate slip rates on buried thrusts in regions also characterized by active strike-slip tectonics (e.g., Hill, 1989; Weldon and Humphreys, 1989). Moreover, more than one interpretive cross section will generally explain available subsurface data (e.g., Yeats and Huftile, 1989; Namson and Davis; 1989). Continued analysis of subsurface data holds the potential to refine knowledge of the spatial extent of the broad buried thrusts outlined in Figure 15 and, hence, place limits on the location and potential size of future earthquakes. With respect to the slip rate analysis, it seems clear that future effort will necessarily focus on determining the late Quaternary and Holocene rate of slip on these structures through the study of Quaternary and Holocene deposits that overlie and are deformed by the active fold structures.

Summary

The above compilation and accompanying Table 1 represent a comprehensive survey of the published literature describing fault slip rate and paleoearthquake studies along the active faults of southern California. The earliest of the studies bearing directly on paleoearthquake history and slip rate of a fault during the Holocene dates back to Clark's (1972) study of the Borrego Mountain section of the San Jacinto fault, which ruptured in the M 6.4 earthquake of 9 April 1968. The bulk of the studies postdate Sieh's (1978a) study of Pallet Creek, which to date still ranks as one of the longest and most detailed paleoearthquake histories of any fault in the world. The extreme success of that study, unraveling a paleoearthquake history extending >1000 yr back in time, clearly emphasized the potential value of such studies and was virtually responsible for the creation of a cottage industry of investigators conducting similar studies in California and around the globe. Ironically, the very success the Pallet Creek study, in comparison to the generally less extensive and more limited histories provided by subsequent studies, points to a fundamental limitation of paleoearthquake as well as fault slip rate studies. More specifically, the potential success of paleoearthquake and fault slip rate studies is dependent on the creation and presentation of a unique set of stratigraphic, geomorphic, and structural relations along and across a fault zone. Hence, although there is most certainly much more data to be gleaned from the geology along faults, the very scattered nature of sites in Figure 1 that have yielded useful paleoearthquake and fault slip rate data reflects the distributed and limited nature of preservation of such sites. Indeed, the slip rates inferred along any given fault zone generally require extrapolation in regions between the limited slip rate data and, hence, assumptions regarding the behavior of the fault elsewhere along strike. Nonetheless, the benefit of geologic data to seismic hazard analysis is now well accepted and proven. With that, the summary of results and source of reference recorded here should prove beneficial to the interested investigator and mark the progress of paleoearthquake and slip rate studies to date.

Acknowledgments

We thank K. Aki and members of the Southern California Earthquake Center for their scientific and financial support of this research. Critical reviews of portions of the manuscript by E. A. Keller, K. Sieh, T. Rockwell, K. Hudnut, S. McGill, B. Bryant, and an anonymous reviewer improved the content considerably. We also thank J. Shaw for sending a copy of his thesis. The research was funded by SCEC 569937. Center for Neotectonics Contribution Number 10.

References

- Anderson, J. G. (1979). Estimating the seismicity from geological structure for seismic-risk studies, *Bull. Seism. Soc. Am.* 69, 135– 158.
- Anderson, J. G., T. K. Rockwell, and D. C. Agnew (1989). Past and possible future earthquakes of significance to the San Diego region, *Earthquake Spectra* 5, 289-335.
- Astiz, L. and C. R. Allen (1983). Seismicity of the Garlock Fault, California, *Bull. Seism. Soc. Am.* 73, 1721-1735.
- Bard, E., B. Hamelin, R. G. Fairbanks, and A. Zindler (1990). Calibration of the C-14 time scale over the past 30,000 years using mass-spectrometric U-Th ages from Barbados corals, *Nature* 345, 405–410.
- Bent, A. L. and D. V. Helmberger (1991a). A re-examination of historic earthquakes in the San Jacinto fault zone, California, *Bull. Seism. Soc. Am.* **81**, 2289–2309.
- Bent, A. L. and D. V. Helmberger (1991b). Seismic characteristics of earthquakes along the offshore extension of the western Transverse Ranges, California, Bull. Seism. Soc. Am. 81, 399– 422.
- Bent, A. L., D. V. Helmberger, R. J. Stead, and P. Ho-Liu (1989).
 Waveform modeling of the November 1987 Superstition Hills earthquakes, *Bull. Seism. Soc. Am.* 79, 500-514.
- Bergmann, M., T. K. Rockwell, D. K. Miles, C. K. Hirabayashi,
 M. A. Hushebeck, C. C. Haraden, A. Thomas, and A. Patterson
 (1993). Preliminary assessment of the late Holocene slip rate for the Wildomar fault, Murrieta, California, Final technical report for U.S. Geological Survey External Research Program, Contract 14-08-001-G2062, 12.
- Bird, P. and R. Rosenstock (1984). Kinimatics of present crust and mantle flow in southern California, Geol. Soc. Am. Bull. 95, 946-957.
- Bonkowski, M. S. (1981). Tectonic Geomorphology of the San Andreas Fault Zone, Indio Hills, Coachella Valley, California, *Master's Thesis*, University of California, Santa Barbara, 120 pp.
- Bonilla, M. G. (1973). Trench exposures across surface fault ruptures associated with San Fernando earthquake, in San Fernando, California, Earthquake of February 9, 1971, Vol. 3, U.S. Department of Commerce, Washington, D.C. 173–182.
- Brake, J. F. (1987). Analysis of historic and pre-historic slip on the Elsinore Fault at Glen Ivy Marsh, Temescal Valley, southern California, *Master's Thesis*, San Diego State University, San Diego, 103 pp.
- Brake, J. F. and T. K. Rockwell (1987). Magnitude of slip from historical and prehistorical earthquakes on the Elsinore fault, Glen Ivy Marsh, southern California (abstract), Geol. Soc. Am. 19.
- Brown, R. D. J. (1990). Quaternary deformation, in *The San Andreas Fault System*, California, R. E. Wallace (Editor), U.S. Geol. Surv. Profess. Pap. 515, 83-113.
- Bryant, W. A. (1988). Recently active traces of the Newport-Ingle-wood fault zone, Los Angeles and Orange counties, California, Calif. Div. Mines Geol. Open-File Rept. 88-14, 1-15.
- Bullard, T. J. and W. R. Lettis (1991). Characterization of Quaternary deformation associated with concealed thrust faulting, Los Angeles Basin, California, *Final technical report to U.S. Geological Survey*, 14-08-0001-G1680, 118 pp.
- Burford, R. D. and P. W. Harsh (1980). Slip on the San Andreas

- fault in central California from alignment array surveys, Bull. Seism. Soc. Am. 70, 1233-1261.
- Burke, D. B. and M. M. Clark (1978). Late Quaternary activity along the Garlock fault at Koehn Lake, California, EOS 59, 1126.
- California Ad Hoc Working Group (1992). Future seismic hazards in southern California; phase I: implications of the 1992 Landers earthquake sequence, National Earthquake Prediction Evaluation council, California Earthquake Prediction Evaluation council, and Southern California Earthquake Center technical report, 42 pp.
- Carter, B. A. (1982). Neogene displacement on the Garlock fault, California, EOS 63, 1124.
- Carter, B. (1980). Quaternary displacement on the Garlock fault, California, in Geology and Mineral Wealth of the California Desert, Dibblee Volume, D. L. Fife and A. R. Brown (Editors), South Coast Geological Society, Santa Ana, California, 457–466.
- Clark, M. M. (1972). Surface rupture along the Coyote Creek fault, the Borrego Mountain Earthquake of April 9, 1968, U.S. Geol. Surv. Profess. Pap. 787, 55-57.
- Clark, M. M., K. K. Harms, J. J. Lienkaemper, D. S. Harwood, K. R. Lajoie, J. C. Matti, J. A. Perkins, M. J. Rymer, R. V. Sarna-Wojcicki, R. V. Sharp, J. D. Sims, J. C. Tinsley, and J. I. Ziony (1984). Preliminary slip-rate table for late Quaternary faults of California, U.S. Geol. Surv. Open-File Rept. 84-106, 12.
- Clark, M. M., A. Grantz, and M. Rubin (1972). Holocene activity of the Coyote Creek fault as recorded in sediments of Lake Cahuilla, in *The Borrego Mountain Earthquake of April 9*, 1968, U.S. Geol. Surv. Profess. Pap. 787, 112-130.
- Clark, M. M. and K. R. Lajoie (1974). Holocene behavior of the Garlock Fault (abstract), *Geol. Soc. Am.* 6, 156-157.
- Clarke, S. H., H. G. Greene, and M. P. Kennedy (1985). Identifying potentially active faults and unstable slopes offshore, in Evaluating Earthquake Hazards in the Los Angeles Region—An Earth-Science Perspective, J. I. Ziony (Editor), U.S. Geol. Surv. Profess. Pap. 1360, 347-374.
- Cohn, S. N., C. R. Allen, R. Gilman, and N. R. Gouty (1982). Preearthquake and post-earthquake creep on the Imperial fault and the Brawley fault zone, U.S. Geol. Surv. Profess. Pap. P 1254, 161-167.
- Crook, R. C., C. R. Allen, B. Kamb, C. M. Payne, and R. J. Proctor (1987). Quaternary geology and seismic hazard of the Sierra Madre and associated faults, western San Gabriel Mountains, U.S. Geol. Surv. Profess. Pap. 1339, 27-63.
- Darrow, A. C. and P. J. Fisher (1983). Activity and earthquake potential of the Palos Verdes Fault, Final technical report to U.S. Geological Survey, 4-08-001-19786, U.S. Geological Survey, Menlo Park, California, 90 pp.
- Darrow, A. C., and A. G. Sylvester (1984). Activity of the central reach of the Santa Ynez fault: continuation of investigations, *Final technical report to U.S. Geological Survey*, 14-08-0001-21367, 18 pp.
- Davis, G. A. and B. C. Burchfiel (1973). Garlock fault: an intracontinental transform structure, southern California, Geol. Soc. Am. Bull. 84, 1407–1422.
- Davis, T. L., J. Namson, and R. F. Yerkes (1989). A cross section of the Los Angeles area: seismically active fold and thrust belt, the 1987 Whittier Narrows earthquake, and earthquake hazard, J. Geophys. Res. 94, 9644-9664.
- Dibblee, T. W., Jr. (1987). Geology of the Santa Ynez-Topatopa Mountains, southern California, in Structural Evolution of the Western Transverse Ranges: Pacific Section S.E.P.M., Thomas L. Davis and J. S. Namson (Editors), Vol. 48A, pp. 1-16.
- Dibblee, T. W., Jr. (1982). Geology of the Santa Monica Mountains and Simi Hills, southern California, in *Geology and Mineral Wealth of the California Transverse Ranges*, D. L. Fife and J. A. Minch (Editors), Mason Hill Volume, South Coast Geological Society, Inc., Santa Ana, California, 94-130.

- Dokka, R. K. (1983). Displacements on late Cenozoic strike-slip faults of the central Mojave Desert, California, Geology 11, 305-308.
- Dokka, R. K. and C. J. Travis (1990a). Late Cenozoic strike-slip faulting in the Mojave Desert, California, *Tectonics* 9, 311–340.
- Dokka, R. K. and C. J. Travis (1990b). The role of the eastern California shear zone, *Geophys. Res. Lett.* 17, 1323-1327.
- Doser, D. I. (1992). Faulting processes of the 1956 San Miguel, Baja California, earthquake sequence, *Pageoph* 139, 3–16.
- Doser, D. I. (1990). Source characteristics of earthquakes along the southern San Jacinto and Imperial fault zones (1937 to 1954), Bull. Seism. Soc. Am. 80, 1099-1117.
- Doser, D. I. and H. Kanamori (1986). Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure, and the October 15, 1979, earthquake, *J. Geophys. Res.* 91, 675–688.
- Eberhart-Phillips, D., M. Lisowski, and M. D. Zoback (1990). Crustal strain near the big bend of the San Andreas fault: analysis of the Los Padres-Tehachapi trilateration networks, California, *J. Geophys. Res.* **95**, 1139–1153.
- Ehlig, P. (1975). Geologic framework of the San Gabriel mountains, *Bull. Calif. Mines Geol.* **196**, 7–18.
- Fischer, P. J. and G. I. Mills (1991). The offshore Newport-Ingle-wood-Rose Canyon fault zone, California: Structure, segmentation and tectonics in *Environmental Perils San Diego Region*, P. L. Abbott and W. J. Elliott (Editors), San Diego Association of Geologists, San Diego, 17–36.
- Fumal, T. E., S. K. Pezzopane, R. J. Weldon II, and D. P. Schwartz (1993). A 100-year average recurrence interval for the San Andreas Fault at Wrightwood, California, *Science* **259**, 199–203.
- Gath, E. M., T. Gonzalez, and T. K. Rockwell (1992). Slip rate of the Whittier Fault based on 3-D trenching at Brea, southern California (abstract), in *Geological Society of America Cordilleran* Section Meeting, 11-13 May, Eugene, Oregon, Geological Society of America, Cordilleran Section, Anaheim, California, Vol. 24, p. 26.
- Gardner, D. A. and I. Stahl (1977). Geotechnical-seismic investigation of the proposed 330 zone water storage reservoir and water conditioning facilities site for the City of San Buenaventura, California, Report V77151, Geotech. Consult., Inc., Ventura, California, 19 pp.
- Greene, H. G. and M. P. Kennedy (1987). Geology of the innersouthern California Continental Margin, California Division of Mines and Geology, California Continental Margin Geologic Map Series, scale 1:250:000.
- Guptil, E. G. and F. Heath (1981). Surface faulting along the Newport-Inglewood zone of deformation, *Calif. Geol.* 34, 142-148.
- Hamilton, R. M. (1972). Aftershocks of the Borrego Mountain earth-quake from April 12 to June 12, 1968, U.S. Geol. Surv. Profess. Pap. 787, 31-54.
- Hanks, T. C. and C. R. Allen (1989). The Elmore Ranch and Superstition Hills earthquakes of 24 November 1987: introduction to the special issue, *Bull. Seism. Soc. Am.* 79, 231–238.
- Harden, J. W. and J. C. Matti (1989). Holocene and late Pleistocene slip rates on the San Andreas Fault in Yucaipa, California, using displaced alluvial-fan deposits and soil chronology, Geol. Soc. Am. Bull. 101, 1107-1117.
- Hart, E. W., W. A. Bryant, J. E. Kahle, M. W. Manson, and E. J. Bortugno (1988). Summary report: fault evaluation program, 1986–1987 Mojave Desert Region and other areas, Calif. Div. Mines Geol. Open-File Rept. 88-1LA, 40 pp.
- Hauksson, E. (1992). Seismicity, faults, and earthquake potential in Los Angeles, southern California, in Engineering Geology Practice in Southern California, B. W. Pipkin and R. J. Proctor (Editors), Special Publication No. 4, Association of Engineering Geologists, Southern California Section, Van Nuys, California, 167–179.

- Hauksson, E. (1990). Earthquakes, faulting, and stress in the Los Angeles Basin, J. Geophys. Res. 95, 15365-15394.
- Hauksson, E. (1987). Seismotectonics of the Newport-Inglewood fault zone in Los Angeles basin, southern California, Bull. Seism. Soc. Am. 77, 539-561.
- Hauksson, E. and S. Gross (1991). Source parameters of the 1933 Long Beach earthquake, *Bull. Seism. Soc. Am.* 81, 81–98.
- Hauksson, E. and L. M. Jones (1991). The 1988 and 1990 Upland earthquakes: left-lateral faulting adjacent to the central Transverse Ranges, J. Geophys. Res. 96, 8143-8165.
- Hauksson, E. and L. M. Jones (1989). The 1987 Whittier Narrows earthquake sequence in Los Angeles, southern California; seismological and tectonic analysis, J. Geophys. Res. 94, 9569–9589.
- Hauksson, E. and L. M. Jones (1988). The July 1986 Oceanside (M_L = 5.3) earthquake sequence in the continental borderland, southern California, *Bull. Seism. Soc. Am.* 78, 1885–1906.
- Heath, E. G., D. E. Jensen, and D. W. Lukesh (1982). Style and age of deformation on the Chino fault, in *Neotectonics in Southern California*, volume and guidebook, J. D. Cooper (Editor), Geological Society of America, Cordilleran Section, 78th Annual Meeting, Anaheim, California, 43–51.
- Hecker, S., R. E. Fumal, T. J. Powers, J. C. Hamilton, C. D. Garvin, and D. P. Schwartz (1993). Late Pleistocene-Holocene behavior of the Homestead Valley fault segment—1992 Landers, California surface rupture, EOS 74, no. 43, 612.
- Herzberg, M. and T. Rockwell (1993). Timing of past earthquakes on the northern Johnson Valley fault and their relationship to the 1992 rupture, EOS 74, no. 43, 612.
- Hill, M. L. (1989). Comment and reply on "Structural transect of the western Transverse Ranges, California: Implications for lithospheric kinematics and seismic risk evaluation," *Geology* 17, 376– 377.
- Hill, D. P., J. P. Eaton, and L. M. Jones (1990). Seismicity, 1980–86, in *The San Andreas Fault System, California*, R. E. Wallace (Editor), U.S. Geol. Surv. Profess. Pap. 1515, 115–151.
- Hill, M. L. and T. W. Dibblee, Jr. (1953). San Andreas, Garlock and Big Pine faults, California: a study of the character, history and tectonic significance of their displacements, Geol. Soc. Am. Bull. 64, 443-458.
- Hirabayashi, C. Kenji, T. K. Rockwell, and S. G. Wesnousky (1993a). Late Quaternary activity of the San Miguel fault, northern Baja California, Mexico (abstracts with programs), Cordilleran Section, Geol. Soc. Am. 25, 53.
- Hirabayashi, C. K., T. K. Rockwell, and S. Wesnousky (1993b). Late Quaternary activity of the San Miguel fault, northern Baja California, Mexico, in *Geological Investigations in Baja Cali*fornia, no. 21, South Coast Geological Society Inc. annual field trip guidebook, Santa Ana, California, 93-100.
- Hudnut, K., L. Seeber, T. Rockwell, J. Goodmacher, R. Klinger, S. Lindvall, and R. McElwain (1989a). Surface ruptures on cross-faults in the 24 November 1987 Superstition Hills, California, earthquake sequence, *Bull. Seism. Soc. Am.* 79, 282–296.
- Hudnut, K. W., L. Seeber, and T. Rockwell (1989b). Slip on the Elmore Ranch fault during the past 330 years and its relation to slip on the Superstition Hills fault, *Bull. Seism. Soc. Am.* 79, 330-341.
- Hudnut, K. W. and K. E. Sieh (1989). Behavior of the Superstition Hills fault during the past 330 years, Bull. Seism. Soc. Am. 79, 304-329.
- Huftile, G. J. and R. S. Yeats (1992). Convergence rates across a displacement transfer zone in the western Transverse Ranges near Ventura, California, J. Geophys. Res. (submitted for publication).
- Hull, A. G. and C. Nicholson (1992). Seismotectonics of the northern Elsinore Fault Zone, southern California, *Bull. Seism. Soc. Am.* 82, 800-818.

- Jacoby, G. C., Jr., P. R. Sheppard, and K. E. Sieh (1988). Irregular recurrence of large earthquakes along the San Andreas Fault: evidence from trees, *Science* 241, 196-199.
- Jones, L. M., K. E. Sieh, E. Hauksson, and K. L. Hutton (1990).
 The 3 December 1988 Pasadena, California earthquake; evidence for strike-slip motion on the Raymond fault, *Bull. Seism. Soc. Am.* 80, 474–482.
- Jones, L. M., L. K. Hutton, D. D. Given, and C. R. Allen (1986). The 1986 North Palm Springs, California, earthquake, *Bull. Seism. Soc. Am.* 76, 1830–1837.
- Keaton, J. R. (1978). Geomorphic evidence for late Quaternary displacement along the Santa Yniz fault zone, Blue Canyon, eastern Santa Barbara county, California (abstracts with programs), Geol. Soc. Am. 10, 111.
- Keller, E. A., M. S. Bonkowski, R. J. Korsch, R. J. Shlemon (1982a). Tectonic geomorphology of the San Andreas fault zone in the southern Indio Hills, Coachella Valley, California, Geol. Soc. Am. Bull. 93, 46-56.
- Keller, E. A., T. K. Rockwell, M. N. Clark, G. R. Dembroff, and D. L. Johnson (1982b). Tectonic geomorphology of the Ventura, Ojai and Santa Paula areas, western Transverse Ranges, California, in *Neotectonics in Southern California*, volume and guidebook J. D. Cooper (Editor), *Cordilleran Section, Geol. Soc.* Am. 78th Annual Meeting, Anaheim, California, 43–51.
- King, N. E. and J. C. Savage (1983). Strain-rate profile across the Elsinore, San Jacinto and San Andreas faults near Palm Springs, California, 1973–81, Geophys. Res. Lett. 10, 55–57.
- Klinger, R. E. and T. K. Rockwell (1989). Recurrent late Holocene faulting at Hog Lake in the Anza seismic gap, San Jacinto fault zone, southern California (abstracts with programs), Cordilleran Section, Geol. Soc. Am., 85th Annual Meeting of the Rocky Mountain Section, 42, 102.
- La Violette, J. W., G. E. Christenson, and J. C. Stepp (1980). Quaternary displacement on the western Garlock fault, southern California, in *Geology and Mineral Wealth of the California Desert*, *Dibblee Volume*, D. L. Fife and A. R. Brown (Editors), South Coast Geological Society, Santa Ana, California, 449–456.
- Lajoie, K. R., A. M. Sarna-Wojcicki, and R. F. Yerkes (1982). Quaternary chronology and rates of crustal deformation in the Ventura area, California, in *Neotectonics in Southern California*, volume and guidebook, J. D. Cooper, (Editor), *Cordilleran Section Geol. Soc. Am. 78th Annual Meeting*, Anaheim, California, 43-51.
- Lamar, D. L. (1990). Right-slip on Whittier fault system, southern California, in *Field Guide of Whittier Fault*, E. Gath (Editor), Southern California Section, Associate of Engineering Geologists, Los Angeles, California, 1990.
- Larsen, S. and R. Reilinger (1991). Age constraints for the present fault configuration in the Imperial Valley California: evidence for northwestward propagation of the Gulf of California Rift system, J. Geophys. Res. 96, 10339–10341.
- Lee, W. H. K., R. F. Yerkes, and M. Simirenko (1979). Recent earthquake activity and focal mechanisms in the western Transverse Ranges, California, U.S. Geol. Surv. Circ. 799-A, 37 p.
- Legg, M. R. (1991). Developments in understanding the tectonic evolution of the California continental borderland, in *Shepard Commemorative Volume*, R. H. Osborne (Editor), Society of Economic Paleontologists and Mineralogists, Special Publication 46, 291–312.
- Legg, M. R. (1980). Seismicity and tectonics of the inner continental borderland of southern California and northern Baja California, Mexico, Master's Thesis, University of California, San Diego, 1980
- Legg, M. R., B. P. Luyendyk, J. Mammerickx, C. de Moustier, and R. C. Tyce (1989). Sea beam survey of an active strike-slip fault: the San Clemente fault in the California continental borderland, J. Geophys. Res. 94, 1727-1744.

- Lindvall, S. C., T. K. Rockwell, and C. E. Lindvall (1990). The seismic hazard of San Diego revised: new evidence for magnitude 6+ Holocene earthquakes on the Rose Canyon fault zone, in *Proc. of the 4th U.S. National Conference on Earthquake Engineering*, Earthquake Engineering Research Institute, El Cerrito, California, 679–688.
- Lindvall, S. C., T. K. Rockwell, and K. W. Hudnut (1989). Evidence for prehistoric earthquakes on the Superstition Hills fault from offset geomorphic features, *Bull. Seism. Soc. Am.* 79, 342–361.
- Lung, R. and R. J. Weick (1987). Exploratory trenching of the Santa Susana fault in Los Angeles and Ventura Counties, *U.S. Geol. Surv. Profess. Pap.* 1339, 65-70.
- McGill, S. (1993). Late Quaternary slip rate of the Owl Lake fault and maximum age of the latest event on the easternmost Garlock fault, S. California (abstracts with programs), Cordilleran Section, Geol. Soc. Am. 25, 99.
- McGill, S. (1992a). Maximum age of the most recent earthquake on the Garlock fault in Searles Valley, California, Bull. Seism. Soc. Am. (submitted for publication).
- McGill, S. (1992b). Paleoseismology and neotectonics of the central and eastern Garlock fault, Ph.D. Thesis, California Institute of Technology, Pasadena.
- McGill, J. T. (1982). Preliminary geologic map of the Pacific Palisades area, City of Los Angeles, California, scale 1:48,000, U.S. Geol. Surv. Open-File Rept. 82=194, 15 pp.
- McGill, J. T. (1981). Recent movement on the Potrero Canyon fault, Pacific Palisades area, Los Angeles, California, U.S. Geol. Surv. Profess. Pap. 1175, 258–259.
- McGill, S. F. and K. Sieh (1993). Holocene slip rate of the central Garlock fault in southeastern Searles Valley, California, J. Geophys. Res. 98, 14217-14231.
- McGill, S. and K. Sieh (1991). Surficial offsets on the central and eastern Garlock fault associated with prehistoric earthquakes, J. Geophys. Res. 96, 21597-21621.
- Meisling, K. E. (1984). Neotectonics of the north frontal fault system of the San Bernardino Mountains, southern California, *Ph.D. Thesis*, California Institute of Technology, Pasadena, 394 pp.
- Meisling, K. E. and R. J. Weldon (1982a). The late Cenozoic structure and stratigraphy of the western San Bernardino Mountains, in *Geologic Excursions* in the *Transverse Ranges*, volume and guidebook, J. D. Cooper (Compiler), *Cordilleran Section, Geol. Soc. Am.*, 78th Annual Meeting, Anaheim, California, 75–81.
- Meisling, K. E. and R. J. Weldon (1982b). Slip rate, offset, and history of the Cleghorn fault, western San Bernardino Mountains, southern California (abstract), Geol. Soc. Am. 14, 215.
- Merifield, P. M., T. K. Rockwell, and C. C. Loughman (1991). A slip rate based on trenching studies, San Jacinto fault zone near Anza, California, in Proc. of the 1991 Annual Symposium on Engineering Geology and Geotechnical Engineering (no. 27), James P. McCalpin (Editor), Idaho State University, Pocatello, Idaho, 11 pp.
- Meuller, K. J. and T. K. Rockwell (1993). Late Quaternary activity of the Laguna Salada fault in northern Baja California, Mexico, 33 pp. (preprint).
- Mezger, L. and R. J. Weldon (1983). Tectonic implications of the quaternary history of lower Lytle Creek, southeast San Gabriel Mountains (abstract), Geol. Soc. Am. 15, 418.
- Miller, F. K. (1987). Reverse-fault system bounding the north side of the San Bernardino Mountains, *U.S. Geol. Surv. Profess. Pap.* 1339, 83–96.
- Miller, S. T. (1980). Geology and mammalian biostratigraphy of a part of the northern Cady Mountains, Mojave Desert, California, U.S. Geol. Surv. Open-File Rept. 80-878, 122 pp.
- Miller, F. K. and D. M. Morton (1980). Potassium-argon geochronology of the eastern Transverse Ranges and southern Mojave Desert, California, U.S. Geol. Surv. Profess. Pap. 1151, 30.
- Millman, D. E. and T. K. Rockwell (1986). Neotectonics of the El-

- sinore fault in Temescal Valley, California, volume and guidebook, Cordilleran Section Geol. Soc. Am. 32nd Annual Meeting, 82, 159-166.
- Molnar, P. (1991). Final report to the Southern California Earthquake Center for work performed during the period from September through December, 1991, Southern California Earthquake Center Report, 126 pp.
- Morton, D. M. (1975). Synopsis of the geology of the eastern San Gabriel Mountains, southern California, Calif. Div. Mines Geol. Special Rept. 118, 170-176.
- Morton, D. M. and J. C. Matti (1987). The Cucamonga fault zone: geological setting and Quaternary history, U.S. Geol. Surv. Profess. Pap. 1339, 179–203.
- Morton, D. M., J. C. Matti, F. K. Miller, and C. A. Repenning (1986). Pleistocene conglomerate from the San Timoteo badlands, southern California; constraints on strike-slip displacements on the San Andreas and San Jacinto faults, Cordilleran Section Geol. Soc. Am., Annual Meeting, Abstracts with Programs 18, 161.
- Namson, J. and T. Davis (1988). Structural transect of the western Transverse Ranges, California: implications for lithospheric kinematics and seismic risk evaluation, *Geology* 16, 675–679.
- Namson, J. and T. Davis (1989). Comments and replies on "Structural transect of the western Transverse Ranges, California: implications for lithospheric kinematics and seismic risk evaluation." Geology 17, 769-770.
- Nardin, T. R. and T. L. Henyey (1978). Pliocene-Pleistocene diastrophism of Santa Monica and San Pedro shelves, California Continental Borderland, Am. Assoc. Petroleum Geologists Bull. 62, 247-272.
- Nicholson, C. (1992). Seismic behavior of the southern San Andreas fault in the northern Coachella Valley, California: comparison of the 1948 and 1986 earthquake sequences, U.S. Geological Survey—NEHRP final technical report, 38 pp.
- Nicholson, C., L. Seeber, P. Williams, and L. R. Sykes (1986). Seismicity and fault kinematics through the eastern Transverse Ranges, California: block rotation, strike-slip faulting and low-angle thrusts, J. Geophys. Res. 91, 4891–4908.
- Petersen, M. D. (1994). The January 17, 1994 Northridge earthquake, Los Angeles County, *Calif. Geol.*, March/April, 40-45.
- Petersen, M. D., L. Seeber, L. R. Sykes, J. F. Nabelek, J. Armbruster, J. Pacheco, and K. W. Hudnut (1991). Seismicity and fault interaction, southern San Jacinto fault, southern California: implications for seismic hazard, *Tectonics* 10, 1187–1203.
- Pinault, C. T. and T. K. Rockwell (1984). Rates and sense of Holocene faulting on the southern Elsinore fault: further constraints on the distribution of dextral shear between the Pacific and North American Plates (abstract), Geol. Soc. Am. 16, 624.
- Pinter, N. and C. Sorlien (1991). Evidence for latest Pleistocene to Holocene movement on the Santa Cruz Island fault, California, Geology 19, 909-912.
- Prentice, C. S., R. J. Weldon, and K. E. Sieh (1986). Distribution of slip between the San Andreas and San Jacinto faults near San Bernardino, southern California (abstract), Geol. Soc. Am. 18, 172.
- Prescott, W. H., M. Lisowski, and J. C. Savage (1987). Velocity field along the San Andreas fault in Southern California, EOS 68, 1506.
- Proctor, R. J., R. Crook, M. H. McKeown, and R. L. Moresco (1972).
 Relation of known faults to surface ruptures, 1977 San Fernando earthquake, southern California, Geol. Soc. Am. Bull. 83, 1601–1618
- Rasmussen, G. S. (1982). Geologic features and rate of movement along the south brace of the San Andreas fault, San Bernardino, California, in *Neotectonics in Southern California*, J. D. Cooper (Compiler), Geological Society of America, Cordilleran Section, Anaheim, California, 109–114.

- Real, C. R. (1987). Seismicity and tectonics of the Santa Monica– Hollywood-Raymond Hill fault zone and northern Los Angeles Basin, U.S. Geol. Surv. Profess. Pap. 1339, 113-124.
- Richter, C. F. (1958). *Elementary Seismology*, W. H. Freeman, New York, 768 pp.
- Richter, C. F., C. R. Allen, and J. M. Nordquist (1958). The Desert Hot Springs earthquakes and their tectonic environment, *Bull. Seism. Soc. Am.* 48, 315-337.
- Rockwell, T. (1988). Neotectonics of the San Cayetano fault, Transverse Ranges, California, Geol. Soc. Am. Bull. 100, 500-513.
- Rockwell, T. K. (1983). Soil chronology, geology, and neotectonics of the north-central Ventura basin, California, Ph.D. Thesis, University of California, Santa Barbara, California.
- Rockwell, T. K., E. M. Gath, and T. Gonzalez (1992a). Sense and rate of slip on the Whittier fault zone eastern Los Angeles basin, California, Proc. of the 35th Annual Meeting Association of Engineering Geologists, 2-9 October, M. L. Stout (Editor), Association of Engineering Geologists, Santa Ana, California, 679.
- Rockwell, T. K., J. Nolan, D. L. Johnson, and R. H. Patterson (1992b). Ages and deformation of marine terraces between point Conception and Gaviota, Western Transverse Ranges, California, in Quaternary Coasts of the U.S. Marine and Lacustrine Systems, Soc. Economic Paleontologists and Mineralogists Spec. Pub. 48, 333-341.
- Rockwell, T. K., S. C. Lindvall, C. C. Haraden, C. K. Hirabayashi, and E. Baker (1991). Minimum Holocene slip rate for the Rose Canyon fault in San Diego, California, in *Environmental Perils San Diego Region*, P. L. Abbott and W. J. Elliott (Editors), San Diego Association of Geologists, published for the Geol. Soc. Am. Annual Meeting, 37–46.
- Rockwell, T., C. Loughman, and P. Merifield (1990a). Late Quaternary rate of slip along the San Jacinto fault zone near Anza, Southern California, J. Geophys. Res. 95, 8593-8605.
- Rockwell, T. K., R. Klinger, and J. Goodmacher (1990b). Determination of slip rates and dating of earthquakes for the San Jacinto and Elsinore fault zones, in *Geology around the Margins of the Eastern San Bernardino Mountains*, M. A. Kooser and R. E. Reynolds (Editors), Vol. 1, Inland Geological Society, Redlands, 51-56.
- Rockwell, T. K., M. E. Hatch, and D. L. Schug (1987). Late Quaternary rates of Agua Blanca and Borderland faults, U.S. Geological Survey final technical report, contract no. 14-08-0001-22012, 65.
- Rockwell, T. K., R. S. McElwain, D. E. Millman, and D. L. Lamar (1986). Recurrent late Holocene faulting on the Glen Ivy north strand of the Elsinore fault at Glen Ivy Marsh in *Neotectonics* and Faulting in Southern California, volume and guidebook, Cordilleran Section, Geological Society of America, 167–1275.
- Rockwell, T. K., D. L. Lamar, R. S. McElwain, and D. E. Millman (1985). Late Holocene recurrent faulting on the Glen Ivy north strand of the Elsinore fault, southern California (abstract), Geol. Soc. Am. 17, 404.
- Rockwell, T. K., E. A. Keller, M. N. Clark, and D. L. Johnson (1984). Chronology and rates of faulting of Ventura River terraces, California, Geol. Soc. Am. Bull. 95, 1466-1474.
- Rockwell, T. K., and C. T. Pinault (1986). Holocene slip events on the southern Elsinore fault, Coyote Mountains, southern California, in *Neotectonics and Faulting in Southern California*, P. L. Ehlig (Editor), 193–196.
- Rubin, C. and K. Sieh (1993). Long recurrence interval for the Emerson fault: implications for slip rates and probabilistic seismic hazard calculations, EOS 74, no. 43, 612.
- Rust, D. J. (1982a). Radiocarbon dates for the most recent prehistoric earthquake and for late Holocene slip rates, San Andreas fault in part of the Transverse Ranges north of Los Angeles (abstracts with programs), Geol. Soc. Am. 14, 229.
- Rust, D. J. (1982b). Trenching studies of the San Andreas fault bor-

- dering western Antelope Valley, southern California, in Summaries of Technical Reports, Vol. XIV, U.S. Geol. Surv. Open-File Rept. 82-840, 89-91.
- Rzonca, G. F. H. A. Spellman, E. W. Fall, and R. J. Shlemon (1991).
 Holocene displacement of the Malibu Coast fault zone, Winter Mesa, Malibu, California: Engineering geologic implications, Bull.
 Assoc. Engineering Geologists 28, 147-158.
- Salyards, S. L. (1989). Dating and characterizing late Holocene earthquakes using paleomagnitics, *Ph.D. Thesis*, California Institute of Technology, Pasadena, 232 pp.
- Salyards, S. L., K. E. Sieh, and J. Kirshvinck (1992). Paleomagnetic measurement of non-brittle coseismic deformation across the San Andreas fault at Pallett Creek, J. Geophys. Res. 97, 12457–12470.
- Salyards, S. L., K. E. Sieh, E. Kerry, and J. L. Kirschvink (1987).
 Paleomagnetic measurement of dextral warping during the past three large earthquakes at Pallett Creek, southern California (abstracts with programs), in Geol. Soc. Am. Annual Meeting and Exposition, Geol. Soc. Am. 19, 828.
- Sanders, C. O. (1989). Fault segmentation and earthquake occurrence in the strike-slip San Jacinto fault zone, California, in Workshop on Fault Segmentation and Controls of Rupture Initiation and Termination, D. P. Schwartz and R. H. Sibson (Editors), U.S. Geol. Surv. Open-File Rept. 89-0315, 324-349.
- Sanders, C. O., H. Magistrale, and H. Kanamori (1986). Rupture patterns and preshocks of large earthquakes in the southern San Jacinto Fault Zone, *Bull. Seism. Soc. Am.* 76, 1187-1206.
- Sanders, C. O., and H. Kanamori (1989). A seismotectonic analysis of the Anza seismic gap, San Jacinto fault zone, southern California, J. Geophys. Res. 89, 5873-5890.
- Sarna-Wojcicki, A. M., K. R. Lajoie, and R. F. Yerkes (1987). Recurrent Holocene displacement on the Javon Canyon Fault—a comparison of fault-movement history with calculated average recurrence intervals, U.S. Geol. Surv. Profess. Pap. 1339, 169–178.
- Sarna-Wojcicki, A. M., K. R. Lajoie, S. W. Robinson, and R. F. Yerkes (1979). Recurrent Holocene displacement on the Javon Canyon fault, rates of faulting, and regional uplift, western Transverse Ranges, California (abstract) Geol. Soc. Am. 11, 125.
- Sarna-Wojcicki, A. M., K. M. Williams, and R. F. Yerkes (1976). Geology of the Ventura fault, Ventura County, California, scale 1:6000, U.S. Geol. Surv. Misc. Field Stud. Map, MF-781.
- Sarna-Wojcicki, A. M. and R. F. Yerkes (1982). Comment on article by R. S. Yeats on "Low-shake faults of the Ventura basin, California," in *Neotectonics in Southern California*, volume and guidebook, J. D. Cooper (Editor), *Cordilleran Section, Geol.* Soc. Am. 78th Annual Meeting, Anaheim, California.
- Sauber, J., W. Thatcher, and S. C. Solomon (1986). Geodetic measurements of deformation in the central Mojave Desert, California, J. Geophys. Res. 91, 12661-12674.
- Savage, J. C., M. Lisowski, and W. H. Prescott (1990). An apparent shear zone trending north-northwest across the Mojave Desert into Owens Valley, eastern California, *Geophys. Res. Lett.* 12, 2113–2116.
- Savage, J. C., W. H. Prescott, M. Lisowski, and N. E. King (1981). Strain accumulation in southern California, 1973–1980, J. Geophys. Res. 86, 6991–7001.
- Savage, J. C. and W. H. Prescott (1976). Strain Accumulation on the San Jacinto fault near Riverside, California, Bull. Seism. Soc. Am. 66, 1749-1754.
- Schwartz, D. P. and R. J. Weldon (1987). San Andreas slip rates; preliminary results from the 96 St. site near Littlerock, CA (abstract), Geol. Soc. Am. 19, 448.
- Sharp, R. V. (1981). Variable rates of late Quaternary strike slip on the San Jacinto fault zone, southern California, J. Geophys. Res. 86, 1754-1762.
- Sharp, R. V. (1967). San Jacinto fault zone in the peninsular ranges of southern California, Geol. Soc. Am. Bull. 78, 705-530.

- Sharp, R. V., K. E. Budding, J. Boatright, M. J. Ader, M. G. Bonilla, M. M. Clark, T. E. Fumal, K. K. Harms, J. J. Lienkaemper, D. M. Morton, B. J. O'Niel, C. L. Ostergren, D. J. Ponti, M. J. Rymer, J. L. Saxton, and J. D. Sims (1989). Surface faulting along the Superstition Hills Fault Zone and nearby faults associated with the earthquakes of 24 November 1987, Bull. Seism. Soc. Am. 79, 252-281.
- Sharp, R. V., J. J. Lienkaemper, M. G. Bonilla, D. B. Burke, B. F. Cox, D. G. Herd, D. M. Miller, D. M. Morton, D. J. Ponti, M. J. Rymer, J. C. Tinsley, J. C. Youn, J. F. Kahle, E. W. Hart, and K. E. Sieh (1982). Surface faulting in central Imperial Valley, California, earthquake of October 15, 1979, in The Imperial Valley, California, Earthquake of October 15, 1979, U.S. Geol. Surv. Profess. Pap. 1254, 119-143.
- Shaw, J. H. (1993). Active blind-thrust faulting and strike-slip faultbend folding in California, *Ph.D. Thesis*, Princeton University, Princeton, New Jerseys 216 pp.
- Shor, G. G., Jr., and E. Roberts (1958). San Miguel, Baja California Norte, earthquakes of February 1956—a field report, *Bull. Seism.* Soc. Am. 48, 101-116.
- Sieh, K. (1986). Slip rate across the San Andreas fault and prehistoric earthquakes at Indio, California, EOS 67, 1200.
- Sieh, K. E. (1984). Lateral offsets and revised dates of large prehistoric earthquakes at Pallett Creek southern California, J. Geo-phys. Res. 89, 7641-7670.
- Sieh, K. (1978a). Prehistoric large earthquakes produced by slip on the San Andreas fault at Pallett Creek California, J. Geophys. Res. 83, 3907-3939.
- Sieh, K. E. (1978b). Slip along the San Andreas fault associated with the great 1857 earthquake, J. Geophys. Res. 68, 1421-1448.
- Sieh, K., M. Stuiver, and D. Brillinger (1989). A more precise chronology of earthquakes produced by the San Andreas Fault in southern California, J. Geophys. Res. 94, 603-623.
- Sieh, K. E., C. Cheatum, L. Dingus, W. Johnson, and G. McMurty (1973). Geological Investigations of Portions of the San Jacinto Fault Zone, San Bernardino, California, University of California, Riverside, California, 1-50.
- Sieh, K. E. and R. H. Jahns (1984). Holocene activity of the San Andreas fault at Wallace Creek, California, Geol. Soc. Am. Bull. 95, 883-896.
- Sieh, K. E. and P. L. Williams (1990). Behavior of the southernmost San Andreas Fault during the past 300 years, *J. Geophys. Res.* **95**, 6629–6645.
- Smith, G. I. (1975). Holocene movement on the Garlock fault, in Geological Survey Research, U.S. Geol. Surv. Profess. Pap. 975, 202.
- Snay, R. A. and A. R. Drew (1982). Supplementing geodetic data with prior information for crustal deformation in the Imperial Valley, California, Technical Report Series, Geodetic Institute, University of Stuttgart.
- Sorlien, C. C. and N. Pinter (1991). The northern Channel Islands fault system, California (abstract), Geol. Soc. Am. 23, 197.
- Stein, R. S. and G. Ekstrom (1992). Seismicity and geometry of a 110-km-long blind thrust fault, 2, synthesis of the 1982–85 California earthquake sequence, J. Geophys. Res. 97, 4865–4883.
- Strand, C. L. (1980). Pre-1900 earthquakes of Baja California and San Diego County, *Master's Thesis*, San Diego State University, San Diego, California.
- Sykes, L. R. and S. P. Nishenko (1984). Probabilities of occurrence of large plate rupturing earthquakes for the San Andreas, San Jacinto, and Imperial faults, California, J. Geophys. Res. 89, 5905-5927.
- Thatcher, W., J. A. Hileman, and T. C. Hanks (1975). Seismic slip distribution along the San Jacinto fault zone, southern California, and its implications, *Geol. Soc. Am. Bull.* **86**, 1140–1146.
- Thomas, A. P. and T. K. Rockwell (1993). Slip on the Imperial fault in the past 300 years at the U.S.-Mexico international border

- based on trenching, Bull. Seism. Soc. Am., 25 pp. (submitted for publication).
- Toppozada, T. R., C. R. Real, and D. L. Parke (1981). Preparation of isoseismal maps and summaries of reported effects for pre-1900 California earthquakes, Calif. Div. Mines Geol. Open-File Rept. 81-11 SAC, 182 pp.
- Toppozada, T. R. and D. L. Parke (1982). Areas damaged by California earthquakes 1900–1949, *Calif. Div. Mines Geol. Open-File Rept.* 82-17 SAC, 65 pp.
- Treiman, J. A. (1993). The Rose Canyon Fault Zone, southern California, Calif. Div. Mines Geol. Open-File Rept. 93-02, 45 pp.
- Trifunac, M. D. (1972). Tectonic stress and the source mechanism of the Imperial Valley, California, earthquake of 1940, Bull. Seism. Soc. Am. 62, 1283-1302.
- Valensise, G. and S. N. Ward (1992). Geometry, slip-rate and evolution of the Palos Verdes fault, western Los Angeles Basin, California: an integrated geologic appraisal, report to the Southern California Earthquake Center, 10 pp.
- Vaughan, P. and T. K. Rockwell (1986). Alluvial stratigraphy and neotectonics of the Elsinore Fault Zone at Agua Tibia Mountain, southern California, volume and guidebook, Cordilleran Section, Geol. Soc. Am. 82nd Annual Meeting, 82, 177-191.
- Weber, F. H., Jr. (1980). Geological features related to character and recency of movement along faults, north-central Los Angeles County, California, in Earthquake Hazards Associated with the Verdugo-Eagle Rock and Benedict Canyon Fault Zones, Los Angeles County, California, F. H. Weber, Jr., J. H. Bennet, R. H. Chapman, G. W. Chase, and R. B. Saul (Editors), Calif. Div. Mines Geol. Open-File Rept. 80-10 LA, B1-B116.
- Weber, F. H., Jr. (1979). Geologic and geomorphic investigation of the San Gabriel fault zone, Los Angeles and Ventura counties, California, Calif. Div. Mines Geol. annual technical report fiscal year 1977-78, 77 pp.
- Weldon, R. J. (1991). Active tectonic studies in the United States, 1987–1990, U.S. national report to international union of geodesy and geophysics 1987–1990, Rev. Geophys. Supplement, 890– 896.
- Weldon, R. J., T. E. Fumal, and D. P. Schwartz (1989). Paleoseismology of the San Andreas fault at Wrightwood, California: structure and stratigraphy, *EOS* 70, 1207.
- Weldon, R. J. H. and E. D. Humphreys (1989). Comments and replies on "Structural transect of the western Transverse Ranges, California: implications for lithospheric kinematics and seismic risk evaluation," *Geology* 17, 769-770.
- Weldon, R. J. and K. E. Sieh (1985). Holocene rate of slip and tentative recurrence interval for large earthquakes on the San Andreas Fault, Cajon Pass, southern California, Geol. Soc. Am. Bull. 96, 793-812.
- Wesnousky, S. G. (1986). Earthquakes, Quaternary faults, and seismic hazard in California, J. Geophys. Res. 91, 12587–12631.
- Wesnousky, S. G., C. S. Prentice, and K. E. Sieh (1991). An offset Holocene stream channel and the rate of slip along the northern reach of the San Jacinto fault zone, San Bernardino Valley, California, *Geol. Soc. Am. Bull.* 103, 700-709.
- Woodring, W. P., M. N. Bramlette, and W. S. W. Kew (1986).
 Geology and paleontology of the Palos Verdes Hills, California,
 U. S. Geol. Surv. Profess. Pap. 207, 145 pp.
- Wyss, M. (1971). Preliminary source parameter determination of the

- San Fernando earthquake, U.S. Geol. Surv. Profess. Pap. 733, 38-40.
- Yeats, R. S. (1988). Late Quaternary slip rate on the Oak Ridge Fault, Transverse Ranges, California; implications for seismic risk, J. Geophys. Res. 93, 12137-12149.
- Yeats, R. S. (1987). Late Cenozoic structure of the Santa Susana fault zone, U.S. Geol. Surv. Profess. Pap. 1339, 137–160.
- Yeats, R. S. (1986). The Santa Susana Fault at Aliso Canyon oil field, in *Neotectonics and Faulting in Southern California*, volume and guidebook, P. Ehlig (Editor), *Geol. Soc. Am.*, Boulder, Colorado, 13–22.
- Yeats, R. S. (1983). Large-scale Quaternary detachments in Ventura basin, southern California, J. Geophys. Res. 88, 569-583.
- Yeats, R. S. (1982). Low-shake faults of the Ventura basin, California, in *Neotectonics in southern California*, volume and guidebook, J. D. Cooper (Editor), *Cordilleran Section Geol. Soc. Am.* 78th Annual Meeting, Anaheim, California, 3–23.
- Yeats, R. S. (1979). Stratigraphy and paleogeography of the Santa Susana fault zone, Transverse ranges California, in Cenozoic Paleogeography of the Western United States, Pacific Coast Paleogeography Symposium, edited by J. M. Armentrout, M. R. Cole, and F. J. H. M. (Editors), Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, California, 91-204.
- Yeats, R. S., G. J. Huftile, and L. T. Stitt (1992). Late Cenozoic Tectonics of the East Ventura Basin, Transverse Ranges, California, Am. Assoc. Petroleum Geologists, Bull., 58 pp. (submitted for publication).
- Yeats, R. S., W. H. K. Lee, and R. F. Yerkes (1987). Geology and seismicity of the eastern Red Mountain fault, Ventura County, U.S. Geol. Surv. Profess. Pap. 1339, 161-168.
- Yeats, R. S., M. N. Clark, E. A. Keller, and T. K. Rockwell (1981).

 Active fault hazard in southern California: ground rupture versus seismic shaking. *Geol. Soc. Am. Bull.* 92, 189–196.
- Yeats, R. S. and G. J. Huftile (1989). Comments and replies on "Structural transect of the western Transverse Ranges, California: implications for lithospheric kinematics and seismic risk evaluation," *Geology* 17, 769-770.
- Yerkes, R. F., T. H. McCulloh, J. E. Schoellhamer, and J. G. Vedder (1965). Geology of the eastern Los Angeles Basin, southern California, U.S. Geol. Surv. Profess. Pap. 420-A, 57 pp.
- Yerkes, R. F. and W. H. K. Lee (1979). Faults, fault activity, epicenters, focal depths, and focal mechanisms, 1970-75 earth-quakes, western Transverse Ranges, California, *U.S. Geological Survey Misc. Field Studies Map*, MF-1032, 1:250,000.
- Yerkes, R. F. and C. M. Wentworth (1965). Structure, Quaternary history, and genera geology of the Corral Canyon Area, Los Angeles County, California, U.S. Geol. Surv. Open-File Rept. 864.
- Ziony, J. I. and R. F. Yerkes (1985). Evaluating earthquake and surface faulting potential, in *Evaluating Earthquake Hazards in the Los Angeles Region—An Earth-Science Perspective, U.S. Geol. Surv. Profess. Pap. 1360*, 43–91.

Center for Neotectonic Studies University of Nevada-Reno Reno, Nevada 89557-6067